

OLEH : NI WAYAN SUARDIATI PUTRI, S.Pd., M.Pd. NI KADEK SURYATI, S.Pd., M.Pd.

KATA PENGANTAR

Puji syukur penulis panjatkan kehadapan Ida Sang Hyang Widi Wasa/Tuhan Yang Maha Esa atas segala berkat dan rahmat-Nya, Modul Statistika Berbasis SPSS untuk Kampus STMIK STIKOM Indonesia ini dapat diselesaikan tepat pada waktunya. Modul ini merupakan salah satu kelengkapan perangkat pembelajaran yang akan digunakan mahasiswa dalam proses pembelajaran aplikasi SPSS di STMIK STIKOM Indonesia pada matakuliah Statistika.

Penulis berharap Modul ini bermanfaat dalam kegiatan pembelajaran. Selain itu, Akhir kata penulis mohon maaf jika modul ini belum sempurna. Saran perbaikan sangat diharapkan untuk penyempurnaan lebih lanjut.

Denpasar, Agustus 2016

Penulis.

DAFTAR ISI

Halaman

JUDULi
KATA PENGANTARii
DAFTAR ISIiii
PENGENALAN SPSS Error! Bookmark not defined.
MODUL 1 PEMASUKAN DATA DENGAN SPSS
1. Data5
2. Memasukkan Data dengan SPSS6
MODUL 2 PENGOLAHAN DATA DENGAN SPSS DAN PENYAJIAN DATA13
1. Mengolah Data13
2. MENYAJIKAN DATA DALAM BENTUK DIAGRAM15
MODUL 3 UJI PARAMETRIK DENGAN SPSS
MODUL 4 UJI NON PARAMETRIKS
MODUL 5 REGRESI SEDERHANA
MODUL 6 REGRESI BERGANDA75
MODUL 7 VALIDITAS DAN REALIBILITAS85
DAFTAR PUSTAKA 104
RIWAYAT PENULIS

PENGENALAN SPSS

Pada awalnya SPSS dibuat untuk keperluan pengolahan data statistik untuk ilmu-ilmu sosial, sehingga kepanjangan SPSS itu sendiri adalah *Statistikal Package for the Social Sciens*. Sejalan dengan perkembangan SPSS digunakan untuk melayani berbagai jenis pengguna (*user*), seperti untuk proses produksi di pabrik, riset ilmu sains dan lainnya.

Proses pengolahan data spss adalah sbb :

Penjelasan Proses Statistik dengan SPSS:

- Data yang akan diproses dimasukkan lewat menu DATA EDITOR yang otomatis muncul di layar saat SPSS dijalankan.
- ◆ Data yang diinput kemudian diproses, juga lewat menu DATA EDITOR.
- Hasil pengolahan data muncul di layar (*window*) yang lain dari SPSS, yaitu OUTPUT NAVIGATOR

SPSS dapat membaca berbagai jenis data atau memasukkan data secara langsung ke dalam SPSS Data Editor. Bagaimanapun struktur dari file data mentahnya, maka data dalam Data Editor SPSS harus dibentuk dalam bentuk baris (*cases*) dan kolom (*variables*). Beberapa kemudahan yang lain yang dimiliki SPSS dalam pengoperasiannya adalah karena SPSS menyediakan beberapa fasilitas seperti berikut ini:

No	Fasilitas SPSS	Keterangan
1.	Data Editor	Merupakan jendela untuk pengolahan data.
		Window ini terbuka secara otomatis setiap kali
		program spss dijalankan, dan berfungsi untuk input
		data SPSS. Pada data editor juga dijumpai berbagai
		menu utama untuk memanipulasi data input dan
		proses data dengan berbagai macam metode
		statistik.
2.	Viewer	Viewer mempermudah pemakai untuk melihat hasil
		pemrosesan, menunjukkan atau menghilangkan
		bagian-bagian tertentu dari output, serta
		memudahkan distribusi hasil pengolahan dari SPSS
		ke aplikasi-aplikasi yang lain. Isi viewer bisanya
		berupa sebuah tabel, sebuah grafik, sebuah teks
		atau kombinasi ketiganya.
3.	Multidimensional	Hasil pengolahan data akan ditunjukkan dengan
	Pivot Tables	multidimensional pivot tables. Pemakai dapat
		melakukan eksplorasi terhdap tabel dengan
		pengaturan baris, kolom, serta layer. Pemakai juga
		dapat dengan mudah melakukan pengaturan
		kelompok data dengan melakukan splitting tabel
		sehingga hanya satu group tertentu saja yang
		ditampilkan pada satu waktu.
4		
4.	High-Resolution	Dengan kemampuan grafikal beresolusi tinggi, baik
	Graphics	untuk menampilkan <i>pie charts, bar charts,</i>
		histogram, scatterplots, 3-D graphics, dan yang
		lainnya, akan membuat SPSS tidak hanya mudah
		dioperasikan tetapi juga membuat pemakai merasa
		nyaman dalam pekerjaannya.

5.	Database Access.	Pemakai program ini dapat memperoleh kembali
		informasi dari sebuah database dengan
		menggunakan Database Wizard yang
		disediakannya.
6.	Data	Transformasi data akan membantu pemakai
	Transformations	memperoleh data yang siap untuk dianalisis.
		Pemakai dapat dengan mudah melakukan subset
		data, mengkombinasikan kategori, add, aggregat,
		merge, split, dan beberapa perintah transpose files,
		serta yang lainnya.
7.	Electronic	Pengguna dapat mengirimkan laporan secara
	Distribution	elektronik menggunakan sebuah tombol
		pengiriman data (e-mail) atau melakukan export
		tabel dan grafik ke mode HTML sehingga
		mendukung distribusi melalui internet dan
		intranet.
8.	Online Help	SPSS menyediakan fasilitas online help yang akan
		selalu siap membantu pemakai dalam melakukan
		pekerjaannya. Bantuan yang diberikan dapat
		berupa petunjuk pengoperasian secara detail,
		kemudahan pencarian prosedur yang diinginkan
		sampai pada contoh-contoh kasus dalam
		pengoperasian program ini.
9.	Akses Data Tanpa	Analisis file-file data yang sangat besar disimpan
	Tempat	tanpa membutuhkan tempat penyimpanan
	Penyimpanan	sementara. Hal ini berbeda dengan SPSS sebelum
	Sementara	versi 11.5 dimana file data yang sangat besar dibuat
		temporary filenya.

10.	Interface dengan	Fasilitas ini akan menambah efisiensi dan
	Database	memudahkan pekerjaan untuk mengekstrak data
	Relasional	dan menganalisnya dari database relasional.
11.	Analisis Distribusi	Fasilitas ini diperoleh pada pemakaian SPSS for
		Server atau untuk aplikasi multiuser. Kegunaan
		dari analisis ini adalah apabila peneliti akan
		menganalisis file-file data yang sangat besar dapat
		langsung me-remote dari server dan
		memprosesnya sekaligus tanpa harus
		memindahkan ke komputer user.
12.	Multiple Sesi	SPSS memberikan kemampuan untuk melakukan
		analisis lebih dari satu file data pada waktu yang
		bersamaan.
13.	Mapping	Visualisasi data dapat dibuat dengan berbagai
		macam tipe baik secara konvensional atau
		interaktif, misalnya dengan menggunakan tipe bar,
		<i>pie</i> atau jangkauan nilai, simbol gradual, dan <i>chart</i> .

MODUL 1 PEMASUKAN DATA DENGAN SPSS

Pada modul 1 ini anda akan mempelajari :

- 1. Data
- 2. Memasukkan Data dengan SPSS
- 3. Menyimpan Data

1. DATA

a. DUA BAGIAN UTAMA DATA EDITOR

					3			4	A 		ABC
										Visible: 0 of 0) Variat
	var	var	Vä								
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
12											
	4										

Gambar 1.1 Bagian utama data editor

SPSS DATA EDITOR mempunyai dua bagian, yakni:

- 1. **DATA VIEW** : tempat untuk menginput data statistic. Inilah yang selalu tampil di layar.
- VARIABEL VIEW : tempat untuk menginput variable statistic. Bagian ini digunakan hanya pada saat memasukkan dan mendefinisikan variabel-variabel.

Sehingga, jika belum ada *inputing* data apapun, maka pertama kali yang di buka adalah **VARIABEL VIEW**. Pada tempat ini dilakukan pemasukkan variable (bukan data). Setelah selesai proses selanjutnya adalah pemasukan data menggunakan **DATA VIEW**, begitu pula jika kemudian dilakukan penambahan data, penghapusan data, edit data, semua dilakukan di area data view.

b. TIPE DATA

Kita dapat mengelompokkan data menjadi dua tipe, yaitu data kategori dan data numerik. Data kategori terdiri dari data nominal dan data ordinal. Sedangkan data numerik terdiri dari data interval dan data rasio. Data nominal hanya sebatas memberi label pembeda pada suatu data, contohnya gender atau jenis kelamin.

Sedangkan data ordinal menunjukkan tingkatan data seperti tidak sakit, sakit, sangat sakit, contoh lain : sangat tidak setuju, tidak setuju, setuju, sangat setuju. Data interval memiliki konsep persamaan interval atau jarak, contohnya pengukuran waktu seperti 07.00 – 08.30, 50- 100 , dll.

Sedangkan data rasio mewakili jumlah aktual suatu variabel, data ini berpatokan pada nilai nol sebagai tolak ukur, contoh tinggi, berat, jarak, dll.

2. MEMASUKKAN DATA DENGAN SPSS

Berikut ini diberikan data sejumlah mahasiswa yang mengikuti mata kuliah Statistika Dasar.

Nama	Nilai UAS	Gender
Mahasiswa	Statistika Dasar	
Budi	65	Pria
Putu Mahartini	68	Wanita
Siska	50	Wanita
Nyoman Dedi	65	Pria
Luh Sri	58	Wanita
Sutama	61	Pria
Kadek Puspayanti	69	Wanita
Kadek Yoga	61	Pria

Tabel 1.1 Daftar mahasiswa yang mengikuti mata kuliah Statistika Dasar

Sebelum membuat tabel di atas menjadi data yang siap diolah oleh SPSS, perlu diperhatikan bahwa disini ada tiga jenis variabel, yaitu NAMA, NILAI UAS, DAN GENDER. Selain itu, disini juga ada 8 data. Dengan demikian, sistematika input data di atas ada dua langkah. Pertama, membuat tiga variabel, kedua, mengisi tiga variabel tersebut.

Untuk memasukkan data tersebut ke dalam Program SPSS, lakukan langkah-langkah sbb:

<u>F</u> ile	<u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	Analyze	Direct <u>M</u> arketing) <u>G</u> raphs	<u>U</u> tilities Ad	d- <u>o</u> ns <u>W</u> ind	low <u>H</u> elp				
2							= (h 👬		- 4 <u>3</u> -	▲ 1 €		ABG	
												Visible	e: 0 of 0 Varia	ables
		N N	/ar	var	var	var	var	var	var	var	var	var	var	
	1													-
	2													
	3													
	4													
	5													
	6													
	7													
	8													
	9													
1	0													
1	1													
1	2													
1	3	4												
Data	View	Variat	ole View	1										
										PASW Statisti	cs Processor	is ready		

Pertama-tama akan muncul tabel seperti gambar 1.2

Gambar 1.2 Tampilan awal SPSS

1. Klik mouse sekali pada *Variabel View* yang ditunjukkan dengan tanda panah yang ada di sebelah kiri bawah seperti gambar 1.3, dan dengan itu tampilan akan berubah menjadi seperti gambar 1.4

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform Ar	alyze Direc	t <u>M</u> arketing	<u>G</u> raphs <u>U</u> tiliti	es Add- <u>o</u> ns	Window Help			
			7					A 1 년		ABC
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measu
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
	1									
Data View	Variable View									

Gambar 1.4 Tampilan Variabel View

2. Pengisian data pada variabel view

Mendefinisikan Variabel Nama

Name	Ketik "nama"
Туре	String
Width	20
Decimals	0
Label	Mahasiswa
Values	None
Missing	None
Columns	20
Align	Left
Measure	Nominal

Mendefinisikan Variabel Nilai

Name	Ketik "Nilai"
Туре	Numeric
Width	8
Decimals	0
Label	Nilai UAS Statistika
Values	None
Missing	None
Columns	8
Align	Left
Measure	Scale

Name	Ketik "Gender"
Туре	Numeric
Width	8
Decimals	0
Label	Jenis Kelamin
Missing	None
Columns	8
Align	Left
Measure	Scale

Values pada Variabel Gender

Klik mouse satu kali pada sel tsb, kemudian klik mouse satu kali lagi pada kotak yang berisi titik tiga yang ada di sebelah kanan.

Cara pengisian Value Labels sbb:

- Pada Value diisi angka berupa kode, yaitu 1 atau 2. Untuk yang pertama, ketik pada kotak kosong angka 1.
- ✓ Pada Value label diisi dengan keterangan dari angka 1 tsb. Misalkankode 1 untuk Pria, maka ketik pada kotak kosong itu Pria. Seperti gambar 1.5 dibawah ini

Gambar 1.5 Pengisian Value Label

- ✓ Otomatis tombol Add aktif, dan klik mouse satu kali pada tombol tsb. Maka otomatis keterangan 1="Pria" akan tampak pada kotak kosong yang sejajar dengan Add.
- ✓ Isi lagi pada Value dengan angka 2
- ✓ Pada Value label diisi dengan keterangan dari angka 2 tsb. Misalkankode 2 untuk Wanita, maka ketik pada kotak kosong itu Wanita.
- ✓ Otomatis tombol Add aktif, dan klik mouse satu kali pada tombol tsb. Maka otomatis keterangan 2 = "Wanita" akan tampak pada kotak kosong yang sejajar dengan Add. Klik mouse satu kali pada OK.

Setelah data selesai diisi, maka akan terlihat hasilnya sebagai berikut :

<u>F</u> ile <u>E</u> o	dit <u>V</u>	iew <u>D</u> ata	Transform <u>A</u> r	nalyze Direc	t <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilities	Add- <u>o</u> ns <u>W</u>	indow <u>H</u> elp			
		0		ч 	╞╞╧	🛛 👬 📕		- 4 <u>2</u>			1
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measu
1		Nama	String	20	0	Nama Mahasiswa	None	None	20	≡ Right	💰 Nominal🚄
2		Nilai	Numeric	8	0	Nilai UAS Stati	None	None	8	·≡ Right	🛷 Scale
3		Gender	Numeric	8	0	Jenis Kelamin	{1, Pria}	None	8	■ Right	🛷 Scale
4											
5											
6											

Gambar 1.5 Hasil Pengolahan Variabel View

Untuk mengisi datanya, klik Data View yang ada di sebelah kiri bawah. Setelah itu akan muncul tabel sebagai berikut :

* 🖿	Untitled1	[DataS	et0] - P4	ASW S	tatistics	Data Edi	tor	-			-							
File	Edit	View	<u>D</u> ata	Trar	nsform	Analyz	e Direc	t <u>M</u> arket	ting <u>G</u> r	aphs	Utilities	Add- <u>o</u> ns	: <u>W</u> i	indow <u>F</u>	lelp			
6					5						*5	4		4		 1⇔		ABG
				Nama	а		Nilai		Gender		var	var		var		var	var	var
	1																	
	2																	
	3																	
	4																	
	5																	
	6																	
	7																	
	8																	

Gambar 1.6 Tampilan Data View

Menyimpan Data

Setelah semua data terisi, simpan data dengan cara sebagai berikut : Klik File, kemudian pilih dan klik mouse satu kali pada Save As.

New		1128 A		66 WT	1222		1111
Open	÷.	E 👬	- 30	88 <u>m</u>	1	-A	
Open Database							
📴 Read Text Data		Nilai	Gender	VBF	var	var	V
Ctose Ctd+F4						_	_
Ctrl+S							-
Save As							-
to Database							
Mark File Read Only							
Mename Dataset							
Display Data File Information	- >			_			-
😡 Cache Data				_		_	-
Stop Processor Ctrl+Period	d						-
Switch Server							
Repository	- >		_	***			_
Print Preylew							
Print Ctri-P						PASW S	tatistics I
Recently Used Data							
Recently Used Files	- >		_				
Eyt		WR	1				

Gambar 1.7 Cara Menyimpan

Pada File Name, ketik data1. Kemudian klik mouse satu kali pada Save.

LATIHAN 1

1. Perhatikan tabel di atas, tabel ini menunjukkan harga barang di sebuah toko buku, gunakanlah SPSS untuk menginput data tersebut!

	Barang	Harga Pokok/Unit	Stock Di Gudang
1.	Buku Tulis	3000	5240
2.	Tas Punggung	80000	40000
3.	Dompet	45000	22000
4.	Jam Tangan	70000	2500
5.	Spidol	7000	7800
6.	Kertas File	30000	25000
7.	Gunting	70000	7800
8.	Tempat CD	45000	5200
9.	Pensil Zebra	17000	22000
10.	Penggaris	5000	10500

2. Tugas individual

Carilah data mahasiswa di sekitar Kampus STIKI Indonesia dengan mendapatkan 4 kategori variabel (bebas) dan jumlah dari data tersebut sebanyak 30 data. Lakukan secara manual setelah itu coba input masingmasing data mahasiswa yang diperoleh ke dalam SPSS.

MODUL 2 PENGOLAHAN DATA DENGAN SPSS DAN PENYAJIAN DATA

Pada modul 2 ini anda akan mempelajari :

- 1. Mengolah Data (Menghitung berbagai Ukuran)
- 2. Menyajikan Data dalam bentuk Diagram

1. MENGOLAH DATA (Menghitung berbagai macam ukuran)

Statistik deskripsi lebih berhubungan dengan pengumpulan data dan peringkasan data , serta penyajian hasil peringkasan tersebut. Data-data statistik yang bisa diperoleh dari hasil sensus, survei atau pengamatan lainnya, umumnya masih acak, "mentah" dan tidak terorganisir dengan baik (raw data). Data-data tersebut harus diringkas dengan baik dan teratur, baik dalam bentuk tabel datau presentasi grafis, sebagai dasar untuk berbagai pengambilan keputussan (Statistik Inferensi).

Penyajian tabel grafik yang digunakan dalam statistik deskripsi seperti :

- 1. Distribusi Frekuensi.
- 2. Presentasi grafis seperti Histogram, Pie chart dan lainnya.

Untuk mendapatkan gambaran yang lebih jelas tentang data, selain dengan tabel dan diagram, masih diperlukan ukuran-ukuran lain yang merupakan wakil dari data tersebut. Ukuran yang dimaksudkan dapat berupa :

- Ukuran Pemusatan (Rata-Rata Hitung atau Mean, Median dan Modus)
- Ukuran Letak (Quartil dan Persentil)
- Ukuran Penyimpangan/Penyebaran (Range, Ragam, Simpangan Baku dan Galat Baku)

- Skewness adalah tingkat kemiringan
- Kurtosis adalah tingkat keruncingan

Pada bagian ini anda akan melakukan pengolahan data untuk menghitung berbagai statistik seperti : mean dan modus sebagai ukuran gejala pusat; median, kuartil satu dan kuartil tiga sebagai ukuran letak; rentang, simpangan baku dan variansi sebagai ukuran variasi; ukuran kemiringan (skewness); dan kurtosis sebagai ukuran keruncingan. Setelah praktikum diharapkan anda terampil dalam menghitung berbagai ukuran atau statistic tersebut dengan menggunakan program SPSS.

Langkah-langkah yang diperlukan untuk menghitung berbagai macam ukuran dalam statistika yaitu:

a. Masukkan data ke dalam SPSS.

b. Dari menu utama SPSS, pilih dan klik mouse satu kali pada menu *Analyze*. Kemudian pilih submenu *Descriptive Statistics*, lalu pilih *Descriptive*.

Gambar 2.1 Cara mengolah data

Selanjutnya Klik mouse satu kali pada **Options.** Dan Klik mouse satu kali pada **Mean**, **Std.deviation**, **Variance**, **Range**, **Minimum**, **Maximum**, **Kurtosis**, **Skewness**, **S.E. Mean dan Continue.** Seperti gambar 2.2 berikut:

Descriptives: Options	<
<mark>I M</mark> ean I Sum	
Dispersion	
Std. deviation 📝 Minimum	
Variance Variance	
Range S.E. mean	
Distribution	
✓ Kurtosis Skewness	
Display Order	
Variable list	
◎ <u>A</u> lphabetic	
◎ As <u>c</u> ending means	
© <u>D</u> escending means	
Continue Cancel Help	

Gambar 2.2 Descriptives Options

Terlihat kotak pilihan *Save Standardized values as variables* yang telah diberi tanda. Selanjutnya Klik **OK**.

2. MENYAJIKAN DATA DALAM BENTUK DIAGRAM

Dalam penelitian pendidikan pengolahan dan penganalisisan data memegang peranan penting. Data yang telah dikumpulkan terkadang sulit ditafsirkan, oleh karena itu data tersebut perlu disajikan dalam bentuk sebuah tabel atau diagram (grafik). Setelah praktikum anda diharapkan terampil menyajikan data dalam bentuk tabel atau grafik dengan menggunakan Program SPSS.

a. DIAGRAM BATANG

Langkah-langkah yang diperlukan untuk menyajikan data dalam bentuk diagram batang adalah sebagai berikut :

CARA 1

1. Masukkan data ke dalam SPSS atau buka data yang akan diolah.

Dari menu utama SPSS, pilih dan klik mouse satu kali pada menu *Graphs*.
 Klik *Legacy Dialogs*. Lalu pilih *submenu Bar*.

Gambar 2.3 Cara membuat grafik batang

Selanjutnya klik *Simple*. Pada *Datain Chart Are*, pilih dan klik mouse satu kali pada *Summaries* for *Groups of cases* (datanya untuk tiap grup tertentu). Klik mouse satu kali pada *Define*. Untuk kotak pada *Category Axis* diisi dengan variabel pada sumbu datar, Untuk *Bars Represent* diisi oleh nilai pada sumbu tegak. Selanjutnya klik mouse satu kali pada *Titles* untuk memberi judul grafik.

Gambar 2.4 Cara mengisi sumbu grafik

b. DIAGRAM LINGKARAN

Langkah-langkah yang diperlukan untuk menyajikan data kedalam grafik lingkaran sbb:

- 1. Masukkan data kedalam SPSS.
- Dari menu utama SPSS, pilih dan klik mouse satu kali pada menu *Graph*. Selanjutnya pilih *submenu Pie*.

	👔 Charl Builder 🔛 Graphboard Template Chooser			J 🖓 🕥 👋 🤫	
der	Legacy Dials			11 дж. 11 2-0 баг. 12 (ле 14 для	 vie
н () Н ()				Pig Digh-Low Bogslot. Enzy Bar. Population Pyramet.	
				📷 ScateriDot. 🗃 Histogram.	

Gambar 2.5 Cara membuat grafik lingkaran

Pilih dan klik mouse satu kali pada *Summaries for Groups of cases.*

Klik mouse satu kali pada <u>Define</u>. Untuk *Slices Represent* diisi variabel berupa satuan bukan dalam angka, selanjutnya klik *Other summaries function*. Untuk *Define slices by* diisi dengan variabel kualitatif dan Klik OK.

c. DIAGRAM GARIS

Langkah-langkah yang diperlukan untuk menyajikan data kedalam grafik lingkaran sbb:

- 1. Masukkan data kedalam SPSS.
- Dari menu utama SPSS, pilih dan klik mouse satu kali pada menu *Graphs*.
 Klik *Legacy Dialogs*. Lalu pilih *submenu Line.*

1	Chart Builder. Graphboard T	emplate Ch	00541_				
inder	Legacy Dialog	25	-	Bar.	1.		
ta				Line_			
ta.				🖉 grea			
				M Pig.			
ta.				High-Low.			
ta				Engr Bar			
				ScatterDot.			

Gambar 2.6 Cara membuat grafik lingkaran

Klik mouse satu kali pada *Simple.* Pada *Data in Chart Are*, klik *Summariesfor Groups of cases*. Selanjutnya klik *Define*. Untuk kotak pada *Category Axis* diisi dengan variabel pada sumbu datar. Untuk Line *Represent* diisi oleh nilai pada sumbu tegak.

🏥 Define Simple Line: Sumn	naries for Groups of Cases	×
🖋 Jenis Kelamin [Gen	Line Represents ○ N of cases ○ Gum. N ○ Cum. % ○ Other statistic (e.g., mean) Variable: ✓ MEAN(Nilai UAS Statistika[Nilai]) Change Statistic	<u>Titles</u> Options
	Category A <u>v</u> is: Anama Mahasiswa [Nama] Panel by Rows: Nest variables (no empty rows) Columns:	
Template Use chart specification File	Ins from:	

Gambar 2.7 Cara mengisi sumbu pada grafik garis

Contoh Kasus:

Tabel di bawah ini menunjukkan data yang akan dianalisa dengan statistik deskriptif. Dari tabel di bawah, field yang akan dianalisa adalah umur

No	Nama	Umur
1.	Nina	15
2.	Tini	30
3.	Doni	22
4.	Budi	35
5.	Dono	12
6.	Yogik	24
7.	Susi	34
8.	Dini	46
9.	Buda	33
10.	Joni	23
11.	Kiki	20
12.	Tono	19
13.	Joko	24
14.	Yuni	33
15.	Demo	35

Untuk membuat statistik deskripsi dari tabel di atas, lakukan langkahlangkah dengan program SPSS sebagai berikut:

1. Klik menu *Analyze*, pilih *Descriptive Statistics* dan lanjutkan dengan pilihan *Frequencies*. Tampilan yang muncul sebagai berikut.

Frequencies			×			
🖧 Nama	*	Variable(s): ∲ Umur	Statistics Charts Format Bootstrap			
✓ Display frequency tables OK Paste Reset Cancel Help						

Gambar 1.8 Frequencies

- 1. Masukkan variabel *Umur* ke dalam kotak Variables untuk dianalisa.
- 2. Pilih tombol Statistics untuk mengatur item-item yang akan ditampilkan dalam output seperti berikut.

Frequencies: Statistics	×
Percentile Values Quartiles Cut points for: 10 equal groups Percentile(s): Add Change Remove	Central Tendency ✓ Mean ✓ Median ✓ Mode ✓ Sum
Dispersion Std. deviation R Minimum Variance Raimum Range S.E. mean Continue Cancel	 Values are group midpoints Distribution Skewness Kurtosis Help

Gambar 1.9 Frequencies statistics

 Berilah tanda chek point untuk memunculkan item-item analisa yang diinginkan. Dari gambar di atas bisa dilihat bahwa terjadi pembagian kelompok Statistik. Pembagian kelompok tersebut adalah:

a. Central tendency

Pengukuran tendensi pusat yang meliputi mean, median, mode, dan sum.

- *Mean* menunjukkan rata-rata dari masing-masing variabel semua responden.
- *Median* menunjukkan titik tengah data, yaitu jika data diurutkan dan dibagi dua sama besar.
- *Mode* menunjukkan nilai yang paling sering muncul dalam suatu range statistik.
- *Sum* menunjukkan total data.

b. Dispersion

Pengukuran dispersi yang meliputi standard deviation, variance, range, minimum, maximum, dan standard error of the mean.

• *Standard deviasi* menunjukkan despersi rata-rata dari sampel.

- *Minimum* menunjukkan nilai terendah dari suatu deretan data.
- *Maximum* menunjukkan nilai tertinggi dari suatu deretan data.
- *Standard error of mean*, diukur sebagai standard deviasi dibagi dengan akar dari jumlah data valid (n).

c. Distribution

Pengukuran distribusi yang meliputi *skewness* and kurtosis. Bagian ini digunakan untuk melakukan pengecekan apakah distribusi data adalah distribusi normal.

• **Ukuran skewness** adalah nilai skewness dibagi dengan standard error skewness.

Jika rasio skewness berada di antara nilai -2.00 sampai dengan 2.00, maka distribusi data adalah normal sehingga data di atas masih berdistribusi normal.

• *Nilai kurtosis* adalah nilai kurtosis dibagi dengan *standard error*-nya.

d. Percentile values

Percentile values akan menampilkan data-data secara berkelompok menjadi sebuah prosentase.

- 5. Setelah dipilih point-point statistik yang diinginkan dan sesuai dengan kebutuhan, klik tombol *Continue.* Klik *OK* dari kotak dialog *Frequencies*.
- 6. Selanjutnya Pilih klik *Graph* untuk memilih model grafik yang ingin ditampilkan dalam output.

Membaca Output

Setelah dilakukan pemilihan option-option yang diinginkan dan sesuai kebutuhan, selanjutnya tekan tombol **OK** pada kotak dialog **Frequencies**

untuk melanjutkan perintah. Penekanan tombol *OK* akan memunculkan output lengkap seperti gambar di bawah ini.

umur		
Ν	Valid	15
	Missing	0
Mean		27.00
Std. Erro	r of Mean	2.350
Median		24.00
Mode		24 ^a
Std. Devi	iation	9.103
Variance	I.	82.857
Skewnes	SS	.271
Std. Erro	r of Skewness	.580
Kurtosis		208
Std. Erro	r of Kurtosis	1.121
Range		34
Minimun	n	12
Maximur	n	46
Sum		405
Percentil	les 25	20.00
	50	24.00
	75	34.00

Statistics

a. Multiple modes exist. The smallest value is shown

Output Tabel Statistik

Tabel statistik ditunjukkan seperti Gambar 2.10, terlihat beberapa hal hasil pengolahan yang dapat dijelaskan sebagai berikut.

- N menunjukkan jumlah data yang diproses, yaitu 15 buah data.
- Mean menunjukkan rata-rata dari masing-masing variable semua responden.

- Median menunjukkan titik tengah data, yaitu jika data diurutkan dan dibagi dua sama besar.
- Mode menunjukkan nilai yang paling sering muncul dalam suatu range statistik.
- Standard deviasi menunjukkan dispersi rata-rata dari sampel.
- Minimum menunjukkan data terkecil dari sekelompok variabel.
- Maximum menunjukkan nilai data yang terbesar, demikian seterusnya.

Output Tabel Frekuensi

Output berikutnya dari hasil pengolahan data di atas yang masih tampil pada lembar analisa ini adalah tabel Frekuensi. Tabel ini menunjukkan frekuensi kemunculan data seperti Gambar.

Pada output tersebut dapat dijelaskan beberapa hal sebagai berikut.

- Frequency, menunjukkan jumlah responden yang memiliki umur tertentu. Seperti responden dengan umur 12 tahun ada 1 orang, responden dengan umur 15 tahun ada 1 orang, demikian seterusnya.
- *Percent,* menunjukkan prosentase dari jumlah data yang memiliki tinggi tertentu.

umur

		Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	12	1	6.7	6.7	6.7		
	15	1	6.7	6.7	13.3		
	19	1	6.7	6.7	20.0		
	20	1	6.7	6.7	26.7		
	22	1	6.7	6.7	33.3		
	23	1	6.7	6.7	40.0		
	24	2	13.3	13.3	53.3		
	30	1	6.7	6.7	60.0		
	33	2	13.3	13.3	73.3		
	34	1	6.7	6.7	80.0		
	35	2	13.3	13.3	93.3		
	46	1	6.7	6.7	100.0		
	Total	15	100.0	100.0			

Gambar 1.11 Output Tabel Frekuensi

Output Grafik

Output terakhir yang ada dalam lembar data output adalah tampilan grafik bar chart. Laporan berbentuk grafik ini akan cukup penting karena mempermudah pemakai untuk memahami secara cepat isi dari sebuah laporan yang disajikan.

Gambar 1.12 Output Grafik Batang

24

LATIHAN 2

Tugas berkelempok terdiri dari 2-3 orang.

Carilah data Dosen Kampus STIKI Indonesia sebanyak 25 orang, dimana data yang kalian cari adalah jenis kelamin, usia, tingkat pendidikan, bidang keahlian dan status. Lakukan secara manual kemudian input data tersebut mengunakan SPSS.

- a. Tentukanlah mean, median, modus, nilai data terkecil, nilai data terbesar, rentang, simpangan baku, variance, koefisien kurtosisnya, koefisien skewnessnya untuk varibel usia Dosen di Kampus STIKI Indonesia.
- b. Buat grafik batang untuk persentase dosen berdasarkan bidang keahliannya.
- c. Buat grafik batang untuk persentase dosen berdasarkan tingkat pendidikannya.
- d. Buat grafik lingkaran yang menggambarkan rata-rata usia dosen berdasarkan bidang keahliannya.
- e. Buat grafik garis yang menggambarkan rata-rata usia dosen berdasarkan tingkat pendidikannya.

MODUL 3 UJI PARAMETRIK DENGAN SPSS

Statistika parametrik adalah suatu ukuran tentang parameter, artinya ukuran seluruh populasi dalam penelitian yang harus diperkirakan dari apa yang terdapat di dalam sampel (karakteristik populasi). Satu syarat umum yang harus dipenuhi apabila seorang peneliti akan menggunakan statistika parametrik, yaitu normalitas distribusi. Asumsi ini harus terpenuhi, karena: 1) secara teoretik karakteristik populasi mengikuti model distribusi normal; 2) nilai-nilai baku statistik yang digunakan untuk uji hipotesis didasarkan kepada model distribusi normal. Asumsi-asmsi lain seperti homogenitas, linieritas harus dipenuhi sesuai dengan hipotesis yang akan diuji. (Pramono, 2011).

Pada modul ini, kita akan dihadapkan pada uji-uji hipotesis. Uji hipotesis ini dilakukan karena seringkali persoalan-persoalan dihadapkan untuk mengambil keputusan/ kesimpulan mengenai suatu sifat populasi yang sedang diamati berdasarkan keterangan sampel yang dtelah diambil. Hipotesa merupakan suatu anggapan teoritis yang dapat ditolak atau diterima secara teoritis. Sedangkan uji hipotesa merupakan hipotesa untuk menentukan anggapan itu benar atau salah. Pada modul ini, hipotesa statistik yang digunakan adalah fungsi penjabaran probabilitas dari random variabel.

Dalam statistic dan penelitian terdapat dua macam hipotesis yaitu hipotesis nol dan alternative. Pada statistik, hipotesis nol diartikan sebagai tidak adanya perbedaan antara parameter dengan statistic, atau tidak adanya perbedaan antara ukuran populasi dan ukuran sampel. Sedangkan hipotesis alternative merupakan lawan dari hipotesis nol yang menyatakan adanya perbedaan antara data populasi dengan data sampel. (Prof. Dr. Sugiyono, 2010).

1. PENGERTIAN HIPOTESIS

Hipotesis adalah pernyataan sementara tentang populasi yang masih harus diuji kebenarannya. Atau hipotesis merupakan kesimpulan sementara tentang hubungan suatu variabel dengan satu atau lebih variabel yang lain. Namun menurut Wirawan (2014), definisi hipotesis adalah suatu pernyataan atau dugaan mengenai sesuatu yang masih perlu di uji atau dibuktikan kebenarannya. Hipotesis dibangun oleh kerangka teori dan kerangka pemikiran sebagai kesimpulan akhir dari kajian teori. Selain cara tersebut dapat juga diperoleh dari pengalaman amatan di lapangan yang kemudian menghasilkan suatu hipotesis kerja.

Adapun beberapa fungsi dari hipotesis adalah untuk menguji kebenaran suatu teori, memberikan gagasan baru untuk mengembangkan suatu teori, memperluas pengetahuan peneliti mengenai suatu gejala yang sedang dipelajari. Selain memiliki fungsi sebuah hipotesis juga harus di uji dimana hipotesis yang baik selalu memenuhi dua pernyataan, yaitu: Menggambarkan hubungan antar variabel dan dapat memberikan petunjuk bagaimana pengujian hubungan tersebut.

Oleh karena itu hipotesis perlu dirumuskan terlebih dahulu sebelum dilakukan pengumpulan data. Hipotesis ini disebut **Hipotesis Alternatif** (Ha) atau **Hipotesis kerja** (Hk) atau H**i** . Hipotesis kerja atau H**i** merupakan kesimpulan sementara dan hubungan antar variabel yang sudah dipelajari dari teori-teori yang berhubungan dengan masalah tersebut. Untuk pengujian H**i** perlu ada pembanding yaitu **Hipotesis Nol** (**Ho**). **Ho** disebut juga sebagai Hipotesis Statistik, karena digunakan sebagai dasar pengujian.

Langkah atau prosedur untuk menentukan apakah menerima atau menolak Hipotesis Statistik (**Ho**) disebut Pengujian Hipotesis. Oleh karena itu dalam pengujian Hipotesis, penarikan kesimpulan mengenai populasi didasarkan pada informasi sampel bukan populasi itu sendiri, maka kesimpulannya dapat saja keliru. Dalam Pengujian Hipotesis terdapat dua kekeliruan atau galat, yaitu :

Kesimpulan	Keadaan sebenarnya Ho		
	Ho benar	Ho salah	
Terima Ho	tepat	galat jenis II (β)	
Tolak Ho	galat jenis I (α)	tepat	

Penarikan kesimpulan dinyatakan tepat apabila kita menerima **Ho**, karena memang **Ho** benar, atau menolak **Ho**, karena memang **Ho** salah. Apabila kita menyimpulkan menolak **Ho** padahal **Ho** benar, maka kita telah melakukan kekeliruan yang disebut kekeliruan atau galat jenis I (α). Begitu pula sebaliknya jika kita menyimpulkan untuk menerima **Ho** padahal **Ho** salah, maka kita telah melakukan kekeliruan yang disebut kekeliruan telah melakukan kekeliruan yang disebut kekeliruan atau galat jenis II (β).

Dalam pengujian, α adalah taraf signifikansi pengujian. Biasanya diambil nilai 5%, 1% dan 0,1%. Untuk bidang sosial dan kedokteran α yang diambil dapat mencapai nilai 20%.Perhatikan bahwa α =5% mempunyai arti bahwa dalam 100 kali pengambilan keputusan uji terdapat 5 kali terjadi kesalahan tipe I dalam pengambilan putusan,yaitu **Ho** benar ditolak.

2. LANGKAH PENGUJIAN

Adapun langkah-langkah pengujian adalah:

- 1. Tetapkan Ho versus H1
- 2. Tetapkan taraf signifikansi α
- 3. Pilih statistik uji yang cocok
- 4. Hitung statistik uji
- 5. Ambil keputusan uji

Untuk hasil SPSS, jika sig < α , maka H₀ ditolak.

3. PEMILIHAN STATISTIK UJI

Pedoman umum dalam memilih statistik uji yang digunakan:

1. Cacah variabel

Jika cacah variabel hanya 1, yaitu variabel bebas maka digunakan teknik deskriptif. Jika cacah variabel terikat lebih dari 1 maka digunakan teknik multivariat.

2. Tujuan

- Membandingkan dua kelompok atau lebih ataupun mencari keberadaan pengaruh suatu variabel dapat digunakan teknik: *uji t, uji Z, Anova, Mann* Whitney, *Wilcoxon atau Friedman*.
- Mencari hubungan antara variabel dapat digunakan korelasi product moment (Pearson), Spearman Brown, Tau Kendall, uji Assosiasi Chisquare, analisis jalur (path analysis)
- Mencari hubungan dan persamaan hubungan antara variabel bebas dengan terikat serta menafsirkan nilai variabel terikat berdasarkan variable bebas digunakan *teknik analisis regresi.*

3. Skala pengukuran variabel

Beberapa teknik uji satatistik sangat peka atau cocok untuk suatu skala pengukuran tertentu, misalnya pada *uji Z, uji t, Anova, regresi dan korelasi* pada umumnya meminta skala pengukuran variabel adalah interval atau rasio. Sedangkan *Chi-square* meminta skala pengukurannya adalah nominal dan ordinal.

4. Asumsi distribusi data

Jika asumsi distribusi data dihiraukan digunakan teknik parametrik, sedangkan jika tidak dihiraukan digunakan teknik non parametrik.

4. MACAM- MACAM UJI HIPOTESIS A. UJI RERATA (UJI MEAN)

Uji rerata digunakan untuk menguji apakah mean populasi (**μ**) adalah ≠, <atau > dari suatu statistik A.

Hipotesis yang dapat disusun adalah:

- 1. $H_0: \mu = A$ versus $H_1: \mu \neq A$
- H₀: μ = A versus H₁: μ > A
- 3. H_0 : $\mu = A$ versus H_1 : $\mu < A$

Dalam SPSS hanya hipotesis pertama yang dapat diuji

Statistik uji yang dapat digunakan adalah:

1. Uji Z, jika standart deviasi populasi (σ) diketahui

$$Z = \frac{x - A}{\sigma / \sqrt{n}} \quad \text{dengan derajat bebas } (df) = n - 1$$

2. Uji t, jika standart deviasi populasi (σ) tidak diketahui

$$t = \frac{\overline{x} - A}{\frac{s}{\sqrt{n}}} \quad \text{dengan derajat bebas } (df) = n - 1$$

Asumsi dalam menggunakan uji di atas adalah data terdistribusi normal (perlu uji normalitas). Uji normalitas dapat diuji melalui diskripsi data, yaitu waktu menampilkan diskripsi data dengan *Explore* pada *option Plots* beri tanda untuk pilihan *Normality plots with tests*

Pada SPSS statistik uji yang ditampilkan adalah uji t.

KASUS 1: UJI MEAN

Seorang Dosen Statistika menyatakan bahwa nilai ujian akhir mahasiswa yang menempuh mata kuliah Statistika Induktif rata-ratanya adalah 80. Untuk membuktikan pernyataan tersebut, gambaran data hasil ujian akhir dari 20 mahasiswa adalah sebagai berikut :

No	NAMA MAHASISWA	NILAI MAHASISWA
1	Cholil Jamahari	90,00
2	Septian	85,00
3	Ryan	85,00
4	Agus	90,00
5	Punk	80,00
6	Veronica	85,00
7	Minhwa Mela	75,00
8	Ana yulianti	70,00
9	Irma	65,00
10	Punia	70,00
11	Vania	75,00
12	Lolita	70,00
13	Firnando	65,00
14	Yusuf	80,00
15	Irfan	70,00
16	Eko	90,00
17	Krisna	75,00
18	Agari	70,00
19	Thomas	65,00
20	Eca	70,00

PRESTASI MAHASISWA

Maka langkah pegujian adalah :

1. Tetapkan Ho versus H1

Ho : $\mu = 80$ (rerata prestasi belajar mahasiswa adalah 80)

H1 : $\mu \neq 80$ (rerata prestasi belajar mahasiswa adalah tidak sama dengan 80)

2. Tetapkan taraf signifikansi $\,\alpha$: 0.1 atau 10%

- 3. Pilih statistik uji yang cocok/criteria pengujian :
 - Uji t (dikarenakan sampel, 20)
 - Untuk hasil SPSS, jika sig < , α maka Ho ditolak.
- 4. Hitung statistik uji : dilakukan pengujian dengan SPSS dengan uji t *(one sample t-test)*

Berikut langkah-langkah pengujian dengan SPSS:

- Masukan data yang akan di analisis
- Kemudian Klik *Anayze, Compare Means*, dan kemudian klik *One Sample T Test*

Gambar 3.1 Tampilan menu analisis

 Masukkan variabel yang akan diuji yaitu *NILAI* pada *Test Value* masukkan angka 80

🔢 One-Sample T Test	X
	Vilai Options Options Bootstrap
OK [Test <u>Va</u> lue: 80 Paste Reset Cancel Help

Gambar 3.2 Tampilan Test Value

Selanjutnya klik *option* pada *confidence internal percentage* masukkan angka 90%

0	ne-Sample T Test: Options	x
	nfidence Interval Percentage: 90	%
M	issing Values	
6	Exclude cases analysis by analysis	is
C) Exclude cases listwise	
	Continue Cancel Help	

Gambar 3.3Persentase Confidence

- Kemudian Klik *Continue* dan Klik *Ok*
- Sehingga akan dihasilkan output seperti berikut :

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Nilai	20	76.2500	8.71704	1.94919

One-Sample Test

	Test Value = 80					
					90% Confidence Interval of the Difference	
	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
Nilai	-1.924	19	.069	-3.75000	-7.1204	3796

Gambar 3.4 Hasil Output One Sample Test
NTERPRESTASI :

Berdasarkan tabel diatas didapat bahwa :

Ho = Rerata prestasi belajar mahasiswa adalah 80

H1 = Rerata prestasi belajar mahasiswa adalah tidak sama dengan 80

Didapatkan nilai uji t adalah -1,924 dengan derajat bebas (*df*) 19 dan sig 0,069. Karena nilai sig < α =0.1 maka Ho Ditolak,. Jadi rerata belajar mahasiswa adalah tidak sama dengan 80 secara statistik.

LATIHAN 3

Seorang pengusaha berpendapat bahwa rata-rata penjualan perhari karyawan-karyawannya adalah sebesar Rp. 1.020,00 dengan alternatif tidak sama dengan itu. Untuk maksud pengujian pendapatnya, pengusaha tersebut melakukan wawancara terhadap 20 orang karyawannya yang dipilih secara acak. Dengan menggunakan $\alpha = 0,05$. Ujilah pendapat tersebut dan berikan analisa anda. Hasil wawancaranya adalah sebagai berikut.

	Penjualan
Nama	(Rp.)
Aan	1000
Andi	980
Beril	880
Bona	970
Cici	850
Dimas	750
Erik	770
Gogon	920
Hari	870
Heru	900
Ila	930
Osin	1080
Mima	1200
Neni	1040
Sila	1040
Siqi	850
Tata	950
Tita	1100
Wina	1110
Zula	990

Tuliskan hasil analisanya dibawah ini, dan apakah Ho diterima?

B. UJI BEDA RERATA (UJI BEDA MEAN)

Uji beda rerata adalah menguji apakah rerata populasi dua kelompok

 $(\mu_1 = \mu_2)$ adalah \neq , >, atau <

Hipotesis yang dapat disusun adalah:

- 1. Ho : $\mu_1 = \mu_2$ versus H1 : $\mu_1 \neq \mu_2$
- 2. Ho : $\mu_1 = \mu_2$ versus H₁ : $\mu_1 > \mu_2$
- 3. Ho : $\mu_1 = \mu_2$ versus H1 : $\mu_1 < \mu_2$

Dalam SPSS hanya hipotesis pertama yang dapat diuji

Statistik uji yangdapat digunakan adalah:

1. Uji Z, jika standart deviasi populasi (σ_1 dan σ_2) diketahui.

$$Z = \frac{x_x^2 - x_2^2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 2. Uji t , jika standart deviasi populasi (σ_1 dan σ_2) tidak diketahui.
 - Untuk dua kelompok yang berasal dari populasi homogen (σ sama)

$$t = \frac{x_x^2 - x_2^2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

s adalah standart deviasi gabungan (pooled)

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}$$

Dengan derajat bebas (df) adalah $n_1 + n_2 - 2$

 Untuk dua kelompok yang berasal dari populasi tidak homogen (σ tidak sama)

$$t = \frac{x_x^2 - x_2^2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Dengan derajat bebas (df) adalah:

$$df = \frac{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} - 2$$

Asumsi dalam menggunakan uji diatas adalah data terdistribusi normal (perlu uji normalitas)

Pada SPSS statistik uji yang ditampilkan adalah uji t

KASUS 2: BEDA MEAN DATA INDEPENDENT

Beban perusahaan RUMAH MANDIRI dan PRIMA

Perusahaan	Beban
RUMAH MANDIRI	60
RUMAH MANDIRI	80
RUMAH MANDIRI	80
RUMAH MANDIRI	75
RUMAH MANDIRI	60
RUMAH MANDIRI	60
RUMAH MANDIRI	60
RUMAH MANDIRI	90
RUMAH MANDIRI	80
RUMAH MANDIRI	70
PRIMA	60
PRIMA	70
PRIMA	70
PRIMA	80
PRIMA	80
PRIMA	75
PRIMA	60
PRIMA	45
	65

Maka langkah pegujian adalah :

1. Tetapkan Ho versus H1

Ho : $\mu 1 = \mu 2$ (Rerata beban perusahaan antara perusahaan RUMAH MANDIRI dan PRIMA adalah sama)

H1: μ1≠μ2 (Rerata beban perusahaan antara perusahaan RUMAH MANDIRI dan PRIMA adalah tidak sama)

- 2. Tetapkan taraf signifikansi α : 0.05 atau5%
- 3. Pilih statistik uji yang cocok/criteria pengujian :
 - Uji t (dikarenakan sampel, 20)
 - Untuk hasil SPSS, jika sig < α , maka Ho ditolak.
 - Hitung statistik uji : dilakukan pengujian dengan SPSS dengan uji t (independent sample t-test).

Berikut Langkah - Langkah Pengggujiannya Menggunakan SPSS :

• Langkah pertama yang harus kita lakukan adalah misalkan mengambil data DUA PERUSAHAAN

DUA PE	RUSAHAAN.sa	V (DataSett) = 10M SPS	S Statistics D	ata Editor
Eile Edit	View Data	Transform Analyze	Direct Mari	eting Gra
/ 🗁 🗄			Pi 📩	
	Eleban	Perusahaan	-	with 1
1	60.00	RUMAH MANDIRI		
2	80.00	RUMAH MANDIRI		
3	80.00	RUMAH MANDIRI		
4	75.00	RUMAH MANDIRI		
5	60.00	RUMAH MANDIRI		
6	50,00	RUMAH MANDIRI		
7	60,00	RUMAH MANDIRI		
8	90,00	RUMAH MANDIRI		
9	80.00	RUMAH MANDIRI		
10	70.00	RUMAH MANDIRI		
11	60,00	PRIMA		
12	70,00	PRIMA		
13	70,00	PRIMA		
14	60.00	PRIMA		
15	80.00	PRIMA		
16	80,00	PRIMA		
17	75,00	PRIMA		
10	50,00	PRIMA		
19	45.00	PRIMA		
20	65.00	PRIMA		
21	1000000			
22				

Gambar 3.5 Data Dua Perusahaan

Klik *Analyze*, selanjutnya klik *Compare Mean*, kemudian klik
 Independent Sample T-Test

Masukkan variabel Beban ke *Test Variable* > Masukkan variabel
 Perusahaan ke *Grouping Variable*

Test Independent-Samples T Test	×
Test Variable(s): Beban [Beban] Grouping Variable: Perusahaan(? ?) Define Groups OK Pauls Reset Cancel Help	Qptions. Bootstrap

Gambar 3.6 Variabel Independent Sample Test

- Klik Define Groups PadaUse Specified values (Group1 isikan angka 1 dan Group2 isikan angka 2)
- Klik Continue

Define Groups	×	12 Independent-Samples T Test Optio.
Use specified values Group 1 1 Group 2 2 O ⊆ut point Continue Cancel Help	₽	Confidence Interval Percentage: 97 % Missing Values Exclude cases analysis by analysis Exclude cases listwise Continue Cancel Help

Gambar 3.7 Tabel Pengisian Group

 Klik *Options* (Isikan 97% sesuai tingkat keyakinan) pada *confidence interval percentage*, selanjutnya klik *Continue* dan *Ok*. Maka akan terlihat hasil output seperti berikut :

	Group Statistics								
	Perusahaan	N	Mean	Std. Deviation	Std. Error Mean				
Beban	RUMAH MANDIRI	10	70.5000	12.57201	3.97562				
	PRIMA	10	65.5000	11.89071	3.76017				

	Independent Samples Test										
		Levene's Test Varia	for Equality of nces	t-test for Equality of Means							
									97% Confidenc Differ	e interval of the ence	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper	
Beban	Equal variances assumed	.130	.722	.914	18	.373	5.00000	5.47215	-7.89337	17.89337	
	Equal variances not assumed			.914	17.944	.373	5.00000	5.47215	-7.89678	17.89678	

Gambar 3.8 Hasil Output Independent Sample Test

INTERPRESTASI :

Dengan tabel diatas kita dapat menentukan bahwa : Pada uji (beda rerata) data yang independent harus dilakukan 2 tahapan Uji k = homogenitas varians (cek kesamaan varians) yaitu : 1. 2. Uji beda rata - rata Uji Hipotesa untuk Homogenitas dan Rerata adalah sebagai berikut : Ho : data beban perusahaan berdasarkan kelompok mempunyai variansi sama H1 : data beban perusahaan berdasarkan kelompok mempunyai variansi tidak sama Uji untuk beda rerata yaitu : Ho : Rerata beban perusahaan antara perusahaan RUMAH MANDIRI dan PRIMA adalah sama H1 : Rerata beban perusahaan antara perusahaan RUMAH MANDIRI dan PRIMA adalah tidak sama

Berdasarkan Hasil Output :

- 1. Uji Homogenitas Varians Hasil hipotesa didapatkan nilai sig 0,722 > α =0,05. Hal ini berarti data beban perusahaan mempunyai variansi yang sama (Ho Diterima).
- 2. Uji Beda Rata Rata

Sedangkan untuk uji beda rerata diperoleh nilai uji t = 0,914 dengan nilai sig = 0,722 dan df = 18. Hal ini berarti Ho diterima karena sig > α = 0,05

Jadi Rerata beban perusahaan antara perusahaan RUMAH MANDIRI dan PRIMA adalah sama secara statistik.

C. UJI BEDA DUA RERATA (UJI BEDA DUA MEANS)

Untuk data sampel berpasangan dalam pengujian hipotesa beda mean maka harus di cek dulu apakah kedua sampel mempunyai hubungan/korelasi. Uji Beda Mean bisa digunakan apabila keduanya berkorelasi, apabila korelasi tidak signifikans maka gunakan cara seperti kasus 2 diatas.

Maka proses uji melalui 2 tahap yaitu:

- 1. Uji korelasi
- 2. Uji beda rerata

KASUS 3: BEDA MEAN DATA SAMPEL BERPASANGAN

Seorang dosen akan menguji perbedaan rata – rata nilai ujian Matakuliah Statistik dan Komunikasi Data. Data yang diambil untuk pengujian tersebut adalah 20 mahasiswa dan tingkat signifikan (α) yang digunakan sebesar 5%. Hasil pengumpulan diambil dalam file "PRESTASI UJI BEDA" bisa dilihat sebagai berikut :

Nama	Nilai	Nilai
	Statistika	Komdat
Cholil Jamahari	90.00	85.00
Septian	85.00	80.00
Rian	85.00	90.00
Agus	90.00	80.00
Punk	80.00	75.00
Veronika	85.00	80.00
Minhwa Mela	75.00	80.00
Ana Yulianti	70.00	70.00
Irma	65.00	80.00
Punia	70.00	65.00
Vania	75.00	90.00
Lolita	70.00	65.00
Firnando	65.00	70.00
Yusuf	80.00	60.00
Irfan	70.00	75.00
Eko	90.00	75.00

Krisna	75.00	80.00
Agari	70.00	80.00
Thomas	65.00	70.00
Eca	70.00	80.00

Maka langkah pegujian adalah :

- 1. Tetapkan Ho versus H1
 - Ho = Rerata nilai Statistik dan Nilai Komunikasi Data adalah sama
 - H1 = Rerata nilai Statistik dan Nilai Komunikasi Data adalah tidak sama
- 2. Tetapkan taraf signifikansi α : 0.5 atau 5%
- 3. Pilih statistik uji yang cocok/criteria pengujian :
 - Uji t (dikarenakan sampel, 20)
 - Untuk hasil SPSS, jika sig < α , maka Ho ditolak.
- Hitung statistik uji : dilakukan pengujian dengan SPSS dengan uji t (paired sample t-test).

Langkah Pengujiannya :

- Kita ambil dalam file "PRESTASI UJI BEDA"
- Kemudian Klik Anayze → Compare Means → Paried Sample T Test

Gambar 3.9 Tampilan menu analisis paired sample test

Masukkan NILAI STATISTIK ke Variable1 dan NILAI_KOMDAT ke
Variable2

Gambar 3.10 Kolom variable paired sImple test

• Selanjutnya klik *Options* (Isikan 95% sesuai tingkat keyakinan) pada *confidence interval percentage*

Gambar 3.11 Persentase Confidence

• Kemudian klik *Continue dan Ok*. Maka akan terlihat hasil output seperti berikut :

Paired Samples Statistics							
		Mean	N	Std. Deviation	Std. Error Mean		
Pair 1	Nilai Statistika	76.2500	20	8.71704	1.94919		
	Nilai Komdat	76.5000	20	7.96373	1.78074		

Paired Samples Correlations							
		N	Correlation	Sig.			
Pair 1	Nilai Statistika & Nilai Komdat	20	.370	.109			

	Paired Samples Test								
		Paired Differences							
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Nilai Statistika - Nilai Komdat	25000	9.38574	2.09872	-4.64266	4.14266	119	19	.906

Gambar 3.12 Hasil Output Paired Sample Test

INTERPRESTASI :

Berdasarkan Hipotesa dan Output diatas didapat hasil sebagai berikut : **Ho** = *Rerata nilai Statistik dan Nilai Komunikasi Data adalah sama* **H1** = *Rerata nilai Statistik dan Nilai Komunikasi Data adalah tidak sama*

Pengujian Hipotesa untuk data berpasangan maka proses uji melalui dua tahap yaitu :

- 1. Uji korelasi
- 2. Uji Beda Rerata

Berdasarkan Hasil:

• UJI hubungan atau Korelasi

Ho: rk =0,109 atau tidak ada korelasi

H1: rk =0,109 atau ada korelasi yang signifikan

Terlihat bahwa sig 0,109 berarti bahwa ada korelasi antara nilai statistika dan nilai komdat. sehingga bisa dilanjut ke uji beda rata – rata.

• Sedangkan untuk uji beda rerata diperoleh nilai uji t = -0,119 dengan nilai sig 0,109 hal ini berarti Ho diterima karena nilai sig > α = 0,05 jadi nilai statistik dan nilai komdat sama. Hal ini terlihat bahwa nilai statistika mempunyai rerata yang hampir sama dengan nilai komdat.

LATIHAN 4

1. Seorang guru berpendapat bahwa tidak ada perbedaan nilai rata-rata murid kelas A dan murid kelas B, namun dengan alternatif ada perbedaan. Untuk menguji pendapat tersebut, kemudian dilakukan penelitian berdasarkan penarikan sampel secara acak dimana ada 8 murid kelas A dan 6 murid kelas B. Ternyata hasil penelitian nilai siswa adalah sebagai berikut :

Kelas A: 7,5 ; 8,5 ; 7 ; 7,3 ; 8 ; 7,7 ; 8,4 ; 8,5Kelas B: 7 ; 6,7 ; 7,3 ; 7,5 ; 6,6; 7Dengan menggunakan $\alpha = 5\%$, uji pendapat tersebut.

2. Produsen Obat Diet (penurun berat badan) ingin mengetahui apakah obat yang diproduksinya benar-benar mempunyai efek terhadap penurunan berat badan konsumen. Untuk itu, sebuah sampel yang terdiri atas 10 orang masing-masing diukur berat badannya, kemudian setelah sebulan meminum obat tersebut, kembali diukur berat badannya.

	SEBELUM	SESUDAH
1	76,85	76,22
2	77,95	77,89
3	78,65	79,02
4	79,25	80,21
5	82,65	82,65
6	88,15	82,53
7	92,54	92,56
8	96,25	92,33
9	84,56	85,12
10	88,25	84,56

Berikut hasilnya (angka dalam kilogram).

Sertailah langkah-langkah dalam UJI HIPOTESA

(hipotesa, perhitungan, pengambilan keputusan, kesimpulan).

SISTEMATIKA LAPORAN STATISTIKA MODUL 3

- BAB I PENDAHULUAN
 - a. Latarbelakang
 - b. Tujuan
- BAB II ALAT DAN BAHAN
- **BAB III PROSEDUR KERJA**
- BAB IV HASIL PENGAMATAN
- BAB V PEMBAHASAN
- BAB VI KESIMPULAN

MODUL 4 UJI NON PARAMETRIKS

Keuntungan dari menggunakan metode non parametrik adalah :

- Data yang dikelolah tidak harus berdistribusi normal sehingga penggunaannya bisa lebih luas penggunannya.
- Dapat digunakan untuk level binomial dan ordinal.
- Lebih sederhana dan lebih mudah dimengerti

1. UJI UNTUK SATU SAMPEL

UJI KOLMOGOROV SMIRNOV

Uji untuk satu sampel terbagi menjadi beberapa cara, salah satunya yaitu dengan uji Kolmogorov-Smirnov. Uji Kolmogorov Smirnov bisa dipakai untuk menguji keselarasan data yang berskala minimal ordinal.

Contoh soal

Berikut ini adalah data sampel berat saus cabe yang diproduksi PT. SAOS JAYA (angka dalam satuan gr)

No	Berat
1	150,0
2	152,5
3	150,9
4	157,1
5	150,4
б	151,8
7	154,2
8	153,5
9	150,4
10	150,8
11	151,8
12	152,6
13	150,7
14	151,4
15	154,7

Pertanyaan :

Perusahaan ingin mengetahui apakah data diatas berasal dari polulasi (seluruh produk saus cabe) yang berdistribusi normal?

Langkah-langkah penyelesaian soal

• Buka lembar kerja baru caranya pilih file-new. Selanjutnya isikan data variabel sesuai dengan data yang diperlukan. Tampak dilayar seperti pada gambar 4.1

	*Untitled1 [DataSet0] - SPSS Data Editor									
	File	Edit	t View D	ata Transform	Analyze	Graphs Utiliti	es Window	Help		
📁 🖬 🖻 🔹 🔶 🏪 🕼 🦛 🖷 🏛 🌐 🧮 🕸 🥅										
I			Name	Туре	Width	Decimals	Label	Values	Missing	
		1	Name Berat	Type Numeric	Width 8	Decimals	Label	Values None	Missing None	
		1	Name Berat	Type Numeric	Width 8	Decimals 1	Label	Values None	Missing None	

Gambar 4.1 Tampilan Variable View

• Isilah data pada Data View sesuai dengan data yang diperoleh. Sehingga tmpilan layar seperti gambar dibawah ini.

*Untitled1 [DataSet0] - SPSS Data									
<u>F</u> ile <u>E</u> di	<u>File Edit View Data Transfor</u>								
🗁 🔒	🖹 📴 🛧	• 🔶 🗽 [
1 : Berat	1 : Berat 15								
	Berat	var							
1	150,0								
2	152,5								
3	150,9								
4	157,1								
5	150,4								
6	151,8								
7	154,2								
8	153,5								
9	150,4								
10	150,8								
11	151,8								
12	152,6								
13	150,7								
14	151,4								
15	154,7								
16									

Gambar 4.2 Tampilan Data View

• Kemudian pilih *Analyze – Nonparametric Test – 1 sample KS* kemudian akan muncul seperti gambar 4.3

🔝 One-Sample Kolmo	gorov-Smirnov Test	—
Eera	Test Variable List:	OK Paste Reset Cancel Help
Test Distrbution Image: Image: Open constraints Image: Open constraints	<u>U</u> niform <u>Exponential</u>	Egact Options

Gambar 4.3 Tampilan Kotak dialog pada One Sample Kolmogorov Smirnov Test

- Setelah itu memindahkan variabel berat pada kolom *test variable list,* sedangkan untuk test type pilihlah normal,
- Berikut adalah data output SPSS

One-Sample Kolmogorov-Smirnov Test

		Berat
Ν		15
Normal	Mean	152,187
Parameters(a,b)	Std. Deviation	1,9708
Most Extreme	Absolute	,178
Differences	Positive	,178
	Negative	-,134
Kolmogorov-Smirr	nov Z	,689
Asymp. Sig. (2-tail	ed)	,730

a Test distribution is Normal.

b Calculated from data.

Gambar 4.4 Hasil output One Sample Kolmogrov Smirnov Test

Analisa :

• Hipotesis Ho : Distribusi populasi mengikuti distribusi normal

H1: Distribusi populasi tidak mengikuti distribusi normal

- Pengambilan keputusan Dasar pengambilan keputusan berdasarkan probabilitas :
 - Jika probabilitas > 0,05, maka Ho diterima

- Jika probabilitas < 0,50, maka Ho ditolak

Keputusan :

Terlihat bahwa pada kolom asymp sig (2-tailed) untuk diuji 2 sisi adalah 0,730. Karena kasus adalah uji satu sisi, maka probabilitas menjadi 0,730/2 =0,365. Disini didapat probabilitas diatas 0,05, maka Ho diterima, atau distribusi populasi mengikuti distribusi normal.

2. UJI DATA DUA SAMPEL BERHUBUNGAN (DEPENDENT)

UJI PERINGKAT BERTANDA WILCOXON

Contoh Soal

Sebuah perusahaan sedang mengembangkan suplemen penambahan berat badan. Perusahaan ingin mengetahui khasiat suplemen tersebut sebelum dipasarkan secara komersial. Untuk itu perusahaan mencoba obat tersebut secara kontinu terhadap 10 orang siswa sekolah dasar yang sudah diukur terlebih dahulu berat badannya. Selang 3 bulan kemudian siswa-siswa tersebut diukur berat badannya lagi untuk mngetahui apakah ada peningkatan berat badannya yang nyata.

Berikut ini adalah hasil pengukuran tersebut (angka dalam kilogram)

No.	Sebelum	Sesudah
1.	25	28
2.	19	18
3.	22	20
4.	21	25
5.	20	25
6.	24	27
7.	26	28
8.	20	26
9.	21	23
10.	19	22

Langkah-langkah penyelesaian soal

• Isikan data variabel sesuai dengan data yang diperlukan. Tampak dilayar seperti pada gambar 4.5

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> na	alyze Direc	t <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilities	Add- <u>o</u> ns <u>W</u>	indow <u>H</u> elp				
🔁 H	🚬 🖶 🖨 📼 🗠 減 🏭 📲 🗱 📰 🖾 📰 🖓 🖏 🖏										
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	Sebelum	Numeric	8	0		None	None	8	≣ Left	🖋 Scale	ゝ Input
2	Sesudah	Numeric	8	0		None	None	8	≣ Left	🖋 Scale	💊 Input
3											

Gambar 4.5 Tampilan Variable View

Isilah data pada Data View sesuai dengan data yang diperoleh.
 Tampilan layar seperti gambar dibawah ini.

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze Dire	ct <u>M</u> arketing	<u>G</u> raphs <u>L</u>	<u>J</u> tilities Add- <u>o</u> n
6			📮 🗠 ·	∽ 🖺		tt	*
		Sebelum	Sesudah	var	var	var	var
	1	25	28				
	2	19	18				
	3	22	20				
	4	21	25				
:	5	20	25				
	6	24	27				
	7	26	28				
	8	20	26				
	9	21	23				
1	10	19	22				
1	11						
1	12						
1	13						
1	14						

Gambar 4.6 Tampilan Data View

• Kemudian pilih *Analyze* – *Nonparametric Test* – *2 related samples* kemudian akan muncul jendela seperti pada gambar 4.7

Two-Related-Samples Test	ts			×
<mark>∳∲ Sebelum</mark> ∳∕ Sesudah		est Pairs: Pair Variable1 Variable2 1 Test Type Variable	 ★ ★ 	Exact Options
	ОК	<u>Sign</u> <u>McNemar</u> Marginal <u>H</u> omogeneity <u>Reset</u> Cancel Help		

Gambar 4.7 Tampilan Kotak dialog pada Two Related Samples Test

- Setelah itu memindahkan variabel sebelum dan sesudah pada kolom *test pair(s) list*, sedangkan untuk test type pilihlah **Wilcoxon**
- Berikut adalah data output SPSS

Ranks

		N	Mean Rank	Sum of Ranks
Sesudah - Sebelum	Negative Ranks	2ª	2.00	4.00
	Positive Ranks	8p	6.38	51.00
	Ties	0°		
	Total	10		

a. Sesudah < Sebelum

b. Sesudah > Sebelum

c. Sesudah = Sebelum

Test Statistics^b

	Sesudah - Sebelum
Z	-2.408ª
Asymp. Sig. (2-tailed)	.016

a. Based on negative ranks.

b. Wilcoxon Signed Ranks Test

Gambar 4.8 Hasil Output SPSS

Analisa :

- Hipotesis
 - Ho : Suplemen tersebut tidak mempunyai efek berarti pada berat badan
 - H1 : Suplemen tersebut mempunyai efek pada peningkatan berat badan
- Pengambilan keputusan
 - a. Dengan membandingkan statistik hitung dengan statistik tabel.
 Jika statistik hitung < statistik tabel, maka Ho ditolak
 Jika statistik hitung > statistik tabel, maka Ho diterima
 - ✓ Statistik hitung

Menghitung statistik uji dari wilcoxon : Dari output terlihat bahwa terlihat dari 10 data, ada 2 data mempunyai beda-bdea negatif, dan 8 data bernilai positif dan tidak ada yang sama (ties). Dalam uji wilcoxon, yang dipakai adalah jumlah beda-beda yang paling kecil, karena itu dalam kasus ini diambil beda-beda negatif, yaitu 4 (lihat output pada kolom 'sum of ranks'). Dari angka ini didapat uji wilcoxon (T) adalah 4.

✓ Statistik tabel

Dengan melihat tabel wilcoxon (dapat dilihat pada tabel statistik), untuk n (jumlah data) = 10, uji satu sisi dan tingkat signifikan (α) = 5%, maka didapat statistik wilcoxon

Keputusan :

Karena statistik hitung < statistik tabel, maka Ho ditolak

b. Dasar pengambilan keputusan berdasarkan probabilitas :
 Jika probabilitas > 0,05, maka Ho diterima
 Jika probabilitas < 0,05, maka Ho ditolak

Keputusan :

Terlihat bahwa pada kolom asymp sig (2-tailed) untuk diuji 2 sisi adalah 0,016. Karena kasus adalah uji satu sisi, maka probabilitas menjadi 0,016/2 =0,008. Disini didapat probabilitas dibawah 0,05, maka Ho ditolak, atau suplemen tersebut memang mempunyai efek yang nyata untuk menaikkan berat badan.

3. UJI DATA DUA SAMPEL TIDAK BERHUBUNGAN (INDEPENDENT)

Uji Mann-Whitney

Contoh Soal

Sebuah perusahaan yang bergerak dalam penjualan alat kesehatan ingin mengetahui apakah para penjualnya membutuhkan pelatihan untuk peningkatan kinerjanya. Maka dibentuklah sekelompok salesman yang diberikan pelatihan dulu sebelum melakukan penjualan, kemudian kinerjanya dibandingkan dengan kinerja salesman yang mendapatkan pelatihan. Berikut ini adalah hasil kedua kelompok tersebut.

No.	Salesman	Kelompok
1.	132	Pelatihan
2.	130	Pelatihan
3.	128	Pelatihan
4.	121	Pelatihan
5.	134	Pelatihan
6.	126	Pelatihan
7.	120	Pelatihan
8.	136	Pelatihan
9.	134	Pelatihan
10.	131	Pelatihan
11.	129	Pelatihan
12.	128	Pelatihan
13.	132	Pelatihan
14.	127	Pelatihan
15.	131	Pelatihan
16.	111	Tanpa Pelatihan

17.	109	Tanpa Pelatihan
18.	120	Tanpa Pelatihan
19.	108	Tanpa Pelatihan
20.	102	Tanpa Pelatihan
21.	112	Tanpa Pelatihan
22.	114	Tanpa Pelatihan
23.	106	Tanpa Pelatihan
24.	109	Tanpa Pelatihan
25.	112	Tanpa Pelatihan

Langkah-langkah penyelesaian soal

• Isikan data variabel sesuai dengan data yang diperlukan. Tampak dilayar seperti pada gambar 4.9

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze Dir	ect <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilit	ies Add- <u>o</u> ns	<u>W</u> indow <u>H</u> e	elp		
🔁 🗄				▙			▲			
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	Salesman	Numeric	8	0		None	None	8	≣ Left	🔗 Scale
2	Kelompok	Numeric	8	0		{1, Pelatiha	None	8	≣ Left	🔗 Scale
3										

Gambar 4.9 Tampilan Variable View

 Pada penulisan variabel kelompok, maka nilai value diisikan sesuai dengan pilihan yang ada yaitu "pelatihan" dan "tanpa pelatihan" seperti tampak pada layar berikut ini.

Value Labels	×
Value Labels Value: Label:	Spelling
Add Change Remove	
OK Cancel Help	

Gambar 4.10 Tampilan value labels

 Isilah data pada Data View sesuai dengan data yang diperoleh. Tampilan layar seperti gambar dibawah ini.

<u>F</u> ile <u>E</u> o	dit	View	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	Direct <u>M</u> ark	eting	<u>G</u> raphs
ا 🔁				. 🗠	~	🛱 📥 E		#
		Sales	man	Kelo	mpok	var		var
1		132		Pelatihan				
2		130		Pelatihan				
3		128		Pelatihan				
4		121		Pelatihan				
5		134		Pelatihan				
6		126		Pelatihan				
7		120		Pelatihan				
8		136		Pelatihan				
9		134		Pelatihan				
10		131		Pelatihan				
11		129		Pelatihan				
12		128		Pelatihan				
13		132		Pelatihan				
14		127		Pelatihan				
15		131		Pelatihan				
16		111		Tanpa Pelati	han			
17		109		Tanpa Pelati	han			
18		120		Tanpa Pelati	han			
19		108		Tanpa Pelati	han			
20		102		Tanpa Pelati	han			
21		112		Tanpa Pelati	han			
22		114		Tanpa Pelati	han			
23		106		Tanpa Pelati	han			

Gambar 4.11 Tampilan Data View

 Untuk menjalankan prosedur ini adalah dari menu kemudian pilih *Analyze – Nonparametric Test – 2 independent samples* kemudian akan muncul seperti pada gambar 4.12

Two-Independent-Samples Tests	×							
<mark>& Salesman</mark> I Kelompok I I I I I I I I I I I I I I I I I I I	<u>Test Variable List:</u> <u>Exact</u> <u>Options</u> <u>Grouping Variable:</u> Define Groups							
Test Type Mann-Whitney U Moses extreme reactions Wald-Wolfowitz runs								

Gambar 4.12 Tampilan Kotak dialog pada Two independent samples

- klik variabel sales, kemudian masukkan dalam Test Variable List
- klik variabel kelompok, masukkan dalam *grouping variabel* seperti pada gambar dibawah ini.

Two-Independent	-Samples Tests		×
Two Independent Sample	s: D X	Test Variable List:	Exact Options
Group <u>1</u> : 1			
Continue Cancel	Help	Grouping Variable: Kelompok(1 2)	
		Define Groups	
Test Type ✓ <u>M</u> ann-Whitney U Mo <u>s</u> es extreme	J 📃 I	<u>K</u> olmogorov-Smirnov <u>W</u> ald-Wolfowitz runs	١Z
ОК	Paste	Reset Cancel	Help

Gambar 4.13 Tampilan pada grouping variable

• Setelah itu pada kolom test type pilihlah Mann-Whitney. Berikut adalah data output SPSS

Mann-Whitney Test

Ranks									
	Kelompok	N	Mean Rank	Sum of Ranks					
Salesman	Pelatihan	15	17.97	269.50					
	Tanpa Pelatihan	10	5.55	55.50					
	Total	25							

Test Statistics^b

	Salesman
Mann-Whitney U	.500
Wilcoxon W	55.500
Z	-4.138
Asymp. Sig. (2-tailed)	.000
Exact Sig. [2*(1-tailed Sig.)]	.000ª

a. Not corrected for ties.

b. Grouping Variable: Kelompok

Gambar 4.14 Hasil Output Uji Mann Whitney

Analisa :

- Hipotesis
 - Ho : Kedua populasi identik (data penjualan kedua kelompok salesman tidak berbeda secara signifikan)
 - H1 : Kedua populasi tidak identik atau berbeda dalam hal lokasi (data penjualan kedua kelompok salesman berbeda secara signifikan)

Pengambilan keputusan

- Dasar pengambilan keputusan berdasarkan probabilitas :
 - Jika probabilitas > 0,05, maka Ho diterima
 - Jika probabilitas < 0,05, maka Ho ditolak

Keputusan :

Terlihat bahwa pada kolom asymp sig (*2-tailed*) untuk diuji 2 sisi adalah 0,000. Disini didapat probabilitas dibawah 0,05, maka Ho ditolak, atau kedua populasi tidak identik atau berbeda dalam hal lokasi (data penjualan kedua kelompok salesman berbeda secara signifikan).

4. UJI DATA TIGA ATAU LEBIH SAMPEL BERHUBUNGAN (*DEPENDENT*)

UJI FRIEDMAN

Contoh Soal

Sebuah Perusahaan biskuit ingin meluncurkan empat rasa baru dalam produk biskuitnya. Keempat rasanya tersebut terdiri dari rasa coklat, rasa strowberi, rasa keju, dan rasa kelapa. Perusahaan ini mengeahui bagaimana tanggapan konsumen terhadap keempat rasa tersebut, dan kemudian dipersilahkan kepada 10 orang untuk mencicipi lalu memberikan nilai untuk setiap rasa yang ada. Nilai yang diberikan ditentukan antara 0-100.

Berikut adalah hasil penilaian kesepuluh orang terhadap paket yang ditawarkan.

Konsumen	Coklat	Strowberi	Keju	Kelapa
1.	78	80	84	71
2.	82	76	85	73
3.	81	78	80	70
4.	80	77	88	71
5.	82	74	86	75
6.	83	81	89	70
7.	85	78	84	70
8.	79	73	85	72
9.	82	70	87	73
10.	78	71	88	70

Pertanyaan :

Dari keempat rasa tersebut, manakah yang memiliki mutu yang sama?

Langkah-langkah penyelesaian soal

• Isikan data variabel sesuai dengan data yang diperlukan. Tampak dilayar seperti pada gambar 4.15

File	<u>E</u> dit	<u>V</u> iew <u>D</u>	<u>)</u> ata	Transform	<u>A</u> nalyze D	irect <u>M</u> arketin <u>o</u>) <u>G</u> raphs <u>U</u> tilit	ies Add- <u>o</u> ns	<u>W</u> indow <u>H</u> e	elp			
	😑 🗄 🖨 📼 🖛 🛥 📓 🛓 🗐 🛍 📗 📓 🚍 🖧 🎬 📕 🍛 🧠												
		Name	e	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1		coklat		Numeric	8	0		None	None	8	≣ Left	🔗 Scale	🖒 Input
2		strowberi		Numeric	8	0		None	None	16	≣ Left	🔗 Scale	🖒 Input
3		keju		Numeric	8	0		None	None	8	≣ Left	🔗 Scale	🖒 Input
4		kelapa		Numeric	8	0		None	None	8	≣ Left	🔗 Scale	🖒 Input
5													
6													

Gambar 4.15 Tampilan Variable View

• Isilah data pada Data View sesuai dengan data yang diperoleh. Tampilan layar seperti gambar dibawah ini.

File	Edit	<u>V</u> iew <u>I</u>	<u>D</u> ata	<u>T</u> ransform	Anal	yze Dire	ct <u>M</u> arketing
		cokla	at	strowberi		keju	kelapa
1		78		80	84		71
2	?	82		76	85		73
3	}	81		78	80		70
4	Ļ	80		77	88		71
5	;	82		74	86		75
6	;	83		81	89		70
7	'	85		78	84		70
8	}	79		73	85		72
9)	82		70	87		73
1	0	78		71	88		70
1	1						
13	2						
1	3						
14	4						

Gambar 4.16 Tampilan Data View

 Untuk menjalankan prosedur ini adalah dari menu kemudian pilih *Analyze – Nonparametric Test – k related samples* kemudian akan muncul seperti pada gambar 4.17

	coklat	strowberi	k	keju kelana var var var var	ar var
1	78	80	84	Tests for Several Related Samples	×
2	82	76	85	Test//ariables:	
3	81	78	80		E <u>x</u> act
4	80	77	88	strowberi	Statistics
5	82	74	86	se keju	
6	83	81	89	🖉 🎺 kelapa	
7	85	78	84		
8	79	73	85		
9	82	70	87		
10	78	71	88		
11				Test Type	
12				🔽 <u>F</u> riedman 🔲 <u>K</u> endall's W 📃 <u>C</u> ochran's Q	
13					
14				OK Paste Reset Cancel Help	
15					
16					

Gambar 4.17 Tampilan Kotak dialog pada k related samples

- klik variabel rasa-rasa, kemudian masukkan dalam *Test Variable*.
 Setelah itu pada kolom test type pilihlah Uji Friedman
- Berikut adalah data output SPSS

Friedman Test

Ra	nks
	Mean Rank
coklat	3.10
strowberi	1.90
keju	3.80
kelapa	1.20

Test Statistics^a

N	10
Chi-square	24.600
df	3
Asymp. Sig.	.000

a. Friedman Test

Gambar 4.18 Hasil Output SPSS UJi Friedman

Analisa :

- ✓ Hipotesis
 - Ho : Populasi-populasi dalam suatu blok adalah identik (keempat rasa biskuit tersebut mempunyai mutu yang sama/ penilaian yang sama)
 - Hi : Sekurang-kurangnya salah satu perlakuan cenderung menghasilkan output yang lebih besar dibandingkan dengan sekurang-kurangnya salah satu perlakuan lain.

Pengambilan keputusan

Dasar pengambilan keputusan berdasarkan probabilitas : Jika probabilitas > 0,05, maka Ho diterima Jika probabilitas < 0,05, maka Ho ditolak

✓ Keputusan

Terlihat bahwa pada kolom *Exact sig (2-tailed)* untuk diuji 2 sisi adalah 0,000. Disini didapat probabilitas dibawah 0,05, maka Ho ditolak, atau sekurang-kurangnya salah satu perlakuan cenderung menghasilkan output yang lebih besar dibandingkan dengan sekurang-kurangnya salah satu perlakuan lain. Atau dalam kasus diatas sekurang-kurangnya salah satu jenis rasa mendapat penilaian yang lebih besar dibandingkan sekurang-kurangnya salah satu rasa yang lainnya.

LATIHAN 5

 Menguji apakah distribusi data nilai statistika dari 30 mahasiswa jurusan statistika normal atau tidak. Berikut adalah data nilai statistika dari 30 mahasiswa jurusan statistika sbb:

81,00	79,00	66,67	86,67	76,67	81,33	56,67	73,33
80,00	70,00	50,00	76,67	86,67	86,67	63,33	70,00
73,33	80,00	63,33	86,67	56,67	66,67	67,67	76,67
80,00	70,00	80,00	53,33	83,33	73,33		

2. Seorang guru ingin mengetahui bagaimana respon siswa dalam belajar dengan memberikan 4 metode yang berbeda. Pada minggu pertama diberikan metode A, minggu kedua diberikan metode B, minggu ketiga diberikan metode C, dan minggu ke empat diberikan metode D.Masingmasing metode dilakukan pengukuran mengenai reaksi dan keaktifan siswa dalam menerima pelajaran yang diukur dengan skala odinal 3 kategori yaitu buruk – sedang – baik

A	В	С	D
1.00	2.00	1.00	3.00
2.00	2.00	2.00	2.00
2.00	2.00	2.00	2.00
2.00	2.00	2.00	3.00
2.00	2.00	2.00	2.00
2.00	2.00	2.00	1.00
1.00	2.00	1.00	2.00
1.00	3.00	2.00	3.00
2.00	2.00	2.00	2.00
2.00	2.00	2.00	2.00
1.00	3.00	1.00	2.00
2.00	2.00	2.00	2.00
1.00	2.00	2.00	2.00
1.00	2.00	1.00	2.00
2.00	2.00	2.00	1.00
1.00	2.00	1.00	3.00
2.00	2.00	2.00	2.00
2.00	2.00	2.00	2.00
1.00	2.00	1.00	2.00
2.00	2.00	3.00	3.00

3. Untuk menguji apakah obat kuat berpengaruh terhadap kekuatan seseorang berlari mengitari stadion. Sejumlah sukarelawan mengitari stadion tanpa minum suplemen sebelumnya, Beberapa hari kemudian sukarelawan yang sama, dengan meminum obata kuat berlari mengitari stadion

Berikut adalah datanya :

Sebelum	Sesudah
5	6
5	7
6	5
3	6
2	2
3	5
5	8
10	8
3	4
1	8

MODUL 5 REGRESI SEDERHANA

Analisis Regresi digunakan untuk tujuan peramalan, dimana dalam model tersebut ada sebuah variabel dependen (tergantung) dan variabel independen (bebas).

Contoh :

PT "CAHYA" dalam beberapa bulan sangat gencar mempromosikan sejumlah barang elektronik dengan membuka outlet-outlet di daerah Bali. Berikut ini data mengenai penjualan elektronik dan biaya promosi yang di keluarkan di 15 tempat di Bali.

	Penjualan	Promosi
Daerah	(Juta Rupiah)	(Juta Rupiah)
Denpasar	201	25
Kuta	204	28
Legian	245	32
Gianyar	170	17
Klungkung	210	30
Bangli	245	32
Karangasem	130	11
Singaraja	215	31
Tabanan	195	18
Jembrana	270	40
Seririt	218	29
Ubud	180	19
Uluwatu	132	13
Jimbaran	278	42
Sanur	165	14

Masalah yang akan di teliti adalah:

- 1) Apakah ada hubungan antara sales dengan biaya promosi?
- 2) Apakah kecenderungan penjualan di masa yang akan datang mengalami kenaikan atau penurunan?
- Langkah awal membuat Desain Variabel

Untitled1 [DataSet0] - SPSS	Statistics Data E	ditor		-					
<u>File E</u> dit <u>\</u>	/jew <u>D</u> ata <u>T</u> r	ansform <u>A</u> nalyz	e <u>G</u> raphs	<u>U</u> tilities A	dd- <u>o</u> ns <u>W</u> indow	Help				
🕞 📙 🚔	📴 👆 💏	🏪 📭 💽 M	1	🗄 🤹 瞒	👒 🙆 🍋					
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
1	Nama_Tem	String	16	0		None	None	10	≣ Left	💑 Nominal
2	Sales	Numeric	8	0		None	None	8	📰 Left	🔗 Scale
3	Promosi	Numeric	8	0		None	None	8	≣ Left	🔗 Scale

Gambar 1.19 Variabel View

Untuk membuat desain variabel, pilihlah perintah submenu dibagian bawah kiri Variabel View kemudian buatlah desainnya sebagai berikut:

• Memasukkan data ke SPSS

Untuk memasukkan data, pilihlah perintah Data View. Setelah itu, masukkan data mulai dari data ke-1 sampai data ke-15.

- Menganalisis data SPSS
 - ✓ Untuk melakukan analisis, klik *Analyse*, selanjutnya klik *Regression*: pilih *Linear*, seperti gambar 5.2.

1	Nama_Daerah	Regorts Descriptive Statistics Tables Compare Means General Linear Model		ні 25	ar	var	Var	A Del G
2 3 4	Kuta Legian Gianyar	Generalized Linear Models Miged Models Correlate	* *	28 32 17				
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Klungkung Bangli Karangasem Singaraja Tabanan Jembrana Serint Ubud Uburd Uburd Uburd Uburd Uburd Sanur	Begression Lgdinear Neural Heleyorks Classify Dimension Reduction Scale Nonparametric Tests Forecasify Survival Mutiple Response Missing Value Analysis Mutiple Imputation Complex Samples Quality Control		Lines L	r e Estimal al Leagt S y Logisti iomial Li al t near ht Estima ge Least nal Scalin	ton	i)	
22	-							-

Gambar 5.2 Cara menganalisis regresi linier

- Selanjutnya pindahkan variabel Penjualan ke kolom *Dependent*, dan pindahkan variabel Biaya Promosi ke kolom *Independent dan* masukkan variabel Nama Daerah ke kolom *Case Labels*
- ✓ Isi kolom Method dengan perintah Enter dan tekan *Continue*

📰 Linear Regression		×
♣ Nama_Daerah Biaya_Promosi	Dependent Penjualan Block 1 of 1 Previous Next Independent(s): Blaya_Promosi Method: Enter T	Statistics Plots Save Options Bootstrap
	Selection Variable: Rule Case Labels: Nama_Daerah WLS Weight:	-
OK	<u>Paste</u> <u>R</u> eset Cancel Help	

Gambar 5.3 Menentukan variable Dependent dan Independent

- Kemudian klik *Option*: Pada pilihan *Stepping Method Criteria*, masukkan angka 0,05 pada kolom *Entry*
- ✓ Beri tanda centang pada *Include constant in equation,* dan pada pilihan *Missing Values*, centang *Exclude cases listwise*

🚰 Linear Regression: Options 🛛 🔍	J
Stepping Method Criteria	
Use probability of F	
Entry: .05 Removal: .10	
◯ Use F <u>v</u> alue	
Entry: 3.84 Removal: 2.71	
Missing Values	
Exclude cases listwise	
O Exclude cases <u>p</u> airwise	
◯ <u>R</u> eplace with mean	
Castinua	
Continue Cancel Help	

Gambar 5.4 Menu Options pada Regresi Linier

- ✓ Kemudian pilih kolom *Statistics*
- ✓ Regression Coefficient atau perlakuan koefisien regresi, tetap aktifkan pilihan *Estimate*
- ✓ Klik pada pilihan *Descriptive* pada kolom sebelah kanan, serta tetap aktifkan *Model Fit*

Linear Regression: Statistics	
Regression Coefficient	Model fit
Lestimates	R <u>s</u> quared change
Confidence intervals	✓ Descriptives
Lovel(%): 95	Part and partial correlations
Co <u>v</u> ariance matrix	Collinearity diagnostics
Residuals	
Durbin-Watson	
<u>Casewise diagnostics</u>	
O Outliers outside: 3 standard deviations	
<u>● All cases</u>	
Continue Cancel Help	

Gambar 5.5 Menu Statistik pada Regresi Linier

✓ Selanjutnya klik *Continue* dan klik *Ok* untuk memproses data

Catatan : Untuk menetukan metode, SPSS memberikan beberapa pilihan sebagai berikut:

- Enter : Memasukkan semua variabel independent
- Remove : Mengeluarkan semua variabel independent
- **Backward** : Mengeluarkan satu per satu variabel *independent*
- Forward : Memasukkan satu per satu variabel independent
- Stepwise : Gabungan antara Forward dan Backward
Setelah melakukan proses analisis maka hasilnya sebagai berikut:

Descriptive Statistics

	Mean	Std. Deviation	N
Penjualan	203.87	44.360	15
Biaya_Promosi	25.40	9.657	15

		Penjualan	Biaya_ Promosi
Pearson Correlation	Penjualan	1.000	.964
	Biaya_Promosi	.964	1.000
Sig. (1-tailed)	Penjualan		.000
	Biaya_Promosi	.000	
N	Penjualan	15	15
	Biaya_Promosi	15	15

Correlations

Gambar 1.6 Output Analisis Regresi Linier

Menjawab masalah

- Rata-rata Penjualan (dengan jumlah data 15 daerah) adalah 203.87 juta dengan standar deviasi Rp 44,360 juta
- Rata-rata Biaya Promosi (dengan jumlah data 15 daerah) adalah 25,40 juta dengan standar deviasi Rp 9,657 juta

1. Apakah ada hubungan antara frekuensi Biaya Promosi dengan jumlah penjualan?

Dari hasil perhitungan didapatkan angka korelasi antara penjualan dengan promosi yang dihitung dengan koefisien korelasi adalah sebesar 0,964. Artinya, hubungan kedua variabel tersebut sangat kuat. Korelasi postif menunjukkan bahwa hubungan antara penjualan dengan biaya promosi searah. Artinya, jika semakin besar biaya promosi ditiap daerah akan membuat penjualan cenderung akan meningkat.

Berdasarkan Arahnya

- Apabila positif (+) maka hubungannya searah
 (jika 1 variabel naik maka yang lain ikut naik)
- Apabila negatif (-) maka hubungannya berlawanan (jika 1 variabel naik maka yang lain turun)

Hubungan antar 2 variabel

Berdasarkan nilai derajat korelasinya baik positf maupun negatif

0,7 s/d 1 kuat 0,4 s/d 0,7 sedang 0,2 s/d 0,4 rendah < 0,2 lemah/ diabaikan/ dianggap tidak ada hubungan antar 2 variabel

Untuk melihat hubungan antara variabel Biaya Promosi dengan penjualan signifikan atau tidak dapat di lihat dari angka probabilitas (sig) sebesar 0,00 yang lebih kecil dari 0,05. Ketentuan mengatakan jika angka probabilitas < 0,05 maka ada hubungan yang signifikan antara kedua veriabel tersebut dan sebaliknya.

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.964ª	.930	.924	12.205

a. Predictors: (Constant), Promosi

b. Dependent Variable: Sales

Menjawab masalah 2.

Apakah kecenderungan penjualan di masa yang akan datang mengalami kenaikan atau penurunan?

Untuk kepentingan tersebut, kita menggunakan angka-angka diatas pada bagian *"Predicted Value"*. Cara melihatnya membandingkan antara data penjualan penelitian awal dengan data penjualan hasil prediksi.

Jika ingin mengetahui cara perhitungan angka penjualan yang diprediksi, hitunglah dengan rumus sbb:

$$Y = a + bx$$

Ket:

- Y adalah Penjualan
- a adalah angka konstan dari Unstandardized Coefficient
- b adalah angka koefisien variabel biaya promosi
 - x adalah angka biaya promosi pada daerah ke -n

Model		Unstandardized Coefficients		Standardized Coefficients		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	91.364	9.140		9.996	.000
	Biaya_Promosi	4.429	.338	.964	13.113	.000

Coefficients^a

a. Dependent Variable: Penjualan

Untuk menghitung angka biaya promosi yang di prediksi pada daerah pertama (denpasar) maka formulanya sebagai berikut:

Untuk perhitungan daerah berikutnya, caranya sama.

Kesimpulan yang dapat dibuat dari kasus di atas ialah:

- Hubungan antara penjualan dengan biaya promosi 0,964 atau sangat kuat, searah dan signifikan.
- Pengaruh penjualan terhadap biaya promosi sebesar 93 %.

- Pengaruh variabel lain di luar model sebesar 7%.
- Kecenderungan biaya promosi secara umum mengalami kenaikan atau meningkat.

LATIHAN 6

 PT "Anak Negeri" ingin menghitung gaji pegawainya dengan masa kerja selama dia mengabdi di perusahaan tersebut. Berikut data masa kerja pegawai dan gajinya:

masa_krj	gaji
3	350
2	300
3	400
5	550
6	500
8	750
9	825
10	875
12	950
9	650
10	850
15	1000
10	700
15	950
11	750
5	400
7	525
8	600
12	750
14	825

Masalah yang akan di teliti adalah:

- Apakah ada hubungan antara masa kerja dengan jumlah gaji pegawai?
- 2) Apakah kecenderungan gaji pegawai di masa yang akan datang mengalami kenaikan atau penurunan?

2. Carilah data tentang tinggi dan berat badan teman sekelas!

Apakah ada hubungan antara tinggi badan dan berat badan ?. Gunakan SPSS dan tentukan persamaan regresi untuk data diatas. Apakah regresi yang didapat signifikan. Gunakan $\alpha = 0,05$.

MODUL 6 REGRESI BERGANDA

adalah Persamaan regresi persamaan matematik yang memungkinkan untuk meramalkan nilai-nilai suatu peubah tak bebas (dependent) dari nilai-nilai satu atau lebih peubah bebas (independent). Dalam hal regresi berganda dimana independentnya lebih dari 1 variabel boleh antara 2 sampai dengan 7. Kalau melebihi 7 variabel independent maka hasil ramalannya akan tidak efektif. Oleh karena itu sebelum Anda mempelajari masalah regresi berganda Anda harus menguasai dan memahami dahulu regresi sederhana. Karena pembahasan ini tidak akan jauh dari regresi sederhana. Satu hal lagi yang penting regresi berganda merupakan hal yang paling sering digunakan dalam menganalisis hubungan karena lebih efektif dari regresi sederhana. Untuk lebih jelasnya terkait regresi sederhana lihat contoh berikut ini :

Contoh;

Seorang Manajer Pemasaran Elektronik ingin mengetahui apakah Promosi dan Harga berpengaruh terhadap Penjualan produk tersebut?

Penjualan (Y)	Promosi (X1)	Harga (X ₂)
205	26	157
202	28	164
254	35	165
245	30	184
201	20	145
290	47	208
234	30	185
204	30	154
216	24	148
245	32	175

Cara menjalankan :

- Buka data baru pada SPSS
- Lengkapi Variabel View dan kemudian masukkan data pada Data Editor.

<u>File</u> <u>E</u> dit	<u>View Data Transforr</u>	m <u>A</u> nalyze D	irect <u>M</u> arketir	ng <u>G</u> raphs	Utilities Add-o	ns <u>W</u> indow	Help				
😑 H 🖨 💷 🖛 🛥 🎬 🏪 💷 👫 🌉 🖾 📟 🖧 🎞 🚚 ⊘ 🌑 🤲											
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	Penjualan	Numeric	8	0		None	None	19		\delta Nominal	💊 Input
2	Promosi	Numeric	8	0		None	None	8	壹 Center	🛷 Scale	🔪 Input
3	Harga	Numeric	8	0		None	None	13	壹 Center	🛷 Scale	🔪 Input
4											

Gambar 6.1 Tampilan Variabel View

Klik *Analize* > *Regression* > *Linier*,...,...maka akan tampil kotak dialog seperti Gambar 6.2

File Edit	View Data Transform	Analyze Direct Marketing Graph	s j	Utilities	Add-on	s <u>Window</u>	Help	
a h	Penjualan	Reports Descriptive Statistics Tables Compare Means		Ya Va	¥	var	Var	1
1	205	General Linear Model		100				
2	202	Generalized Linear Models 🕨						
3	254	Mixed Models +						
4	245	Correlate						
5	201	Regression +	T	Linear				
6	290	Loginear		a Lunear	-			
7	234	Naural Naturates		Curve	Estimatio	on		
8	204	Classifi	B	Partial	Least So	quares		
9	216	Classily	E	Binary	Logistic.			
10	245	Dimension Reduction	L	Multing	omial Log	gistic		
11		Scale	E	Ordina	4			
12		Nonparametric Tests	15	Drahit				
13	1	Forecasting		Prodit	-			
14		Survival +	B	Nonlin	ear			_
15		Multiple Response 🕨	K	Weight	t Estimat	tion		
16	1	Missing Value Analysis		2-Stag	e Least S	Squares		
17		Multiple Imputation		Optima	al Scaling	(CATREG)		
18		Complex Samples +	-	-				
19		Quality Control						
20	1	ROC Curve						-
21			1					
- 22	1				_			_

Gambar 6.2 Tampilan Analisis Regresi

🔢 Linear Regression		×
Promosi Harga	Dependent: Penjualan Block 1 of 1 Previous Next Independent(s): Promosi Harga Method: Enter Selection Variable: Case Labels: WLS Weight Paste Reset Cancel Help	Statistics Plots Save Options Bootstrap

Gambar 6.3 Tampilan analisis regresi linier

- Isikan untuk kolom dependent dengan variable Penjualan,sedangkan untuk kolom Independent dengan Variabel Promosi dan Harga.
- Klik Tombol Statistics, sehingga muncul kotak dialog seperti pada Gambar 6.4 dan sesuaikan dengan pilihan-pilihannya.

Linear Regression: Statistic	cs X
Regression Coefficients Estimates Confidence intervals Level(%): 95 Covariance matrix	 Model fit R squared change Descriptives Part and partial correlations Collinearity diagnostics
Residuals Durbin-Watson Casewise diagnostics Outliers outside:	3 standard deviations
<u>All cases</u> Continue	Cancel Help

Gambar 5.4 Pilihan Statistics

• Klik continue untuk kembali ketampilan kotak dialog sebelumnya.

• Klik tombol *plots*, sehingga muncul kotak dialog sehingga muncul kotak dialog seperti Gambar 6.5 sesuaikan dengan pilihan-pilihannya.

🔢 Linear Regression: Plots	×
DEPENDNT *ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID	Scatter 1 of 1 Previous Next Y:
Standardized Residual Plots Standardized Residual Plots Histogram Normal probability plot Continue	Cancel Help

Gambar 5.5 Plots Regresi Linier

- Selanjutnya klik *continue* untuk kembali ke kotak dialog sebelumnya.
- Kemudian klik tombol *options*, maka akan muncul kotak dialog seperti Gambar 6.6 dan sesuaikan dengan pilihanya.

🏥 Linear f	🔢 Linear Regression: Options 🛛 🗙 🗙					
Stepping Method Criteria Use probability of F Entry: .05 Removal: .10						
© Use F E <u>n</u> try:	O Use F value Entry: 3.84 Removal: 2.71					
Missing	e constant /alues	in equation				
Exclu	de cases	listwise				
© Exclude cases <u>p</u> airwise						
© <u>R</u> eplace with mean						
Continue Cancel Help						

Gambar 5.6 Options Regresi Linier

- Klik *continue* untuk kembali ke tampilan kotak dialog sebelumnya dan klik **OK**.
- •

Hasil Analisis Output seperti Gambar dibawah ini :

	Mean	Std. Deviation	Ν
Penjualan	229.60	29.368	10
Promosi	30.20	7.254	10
Harga	168.50	19.614	10

Descriptive Statistics

Analisis ;

- Mean dari Penjualan adalah 229,60 dengan deviasi standar sebesar 29,368 dan jumlah data yang tersebar (N) sebesar 10.
- Mean dari Promosi adalah 30,20 dengan deviasi standar sebesar 7,254 dan jumlah data yang tersebar (N) sebesar 10.
- Mean dari Harga adalah 168,50 dengan deviasi standar sebesar 19,614 dan jumlah data yang tersebar (N) sebesar 10.

		Penjualan	Promosi	Harga								
Pearson Correlation	Penjualan	1.000	.887	.857								
	Promosi	.887	1.000	.843								
	Harga	.857	.843	1.000								
Sig. (1-tailed)	Penjualan		.000	.001								
	Promosi	.000		.001								
	Harga	.001	.001									
N	Penjualan	10	10	10								
	Promosi	10	10	10								
	Harga	10	10	10								

Correlations

Gambar 6.8 Hasil Output Korelasi

Analisis ;

- Nilai Korelasi menunjukkan angka sebesar 0.887 antara Penjualan dan Promosi. Hal ini menunjukkan bahwa hubungan antara Panjualan dan Promosi adalah kuat.
- Nilai Korelasi menunjukkan angka sebesar 0.857 antara Penjualan dan Harga.Hal ini menunjukkan bahwa hubungan antara Panjualan dan Harga adalah kuat.

	model summaly													
Model					Change Statistics									
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change					
1	.910ª	.828	.778	13.825	.828	16.806	2	7	.002					

a. Predictors: (Constant), Harga, Promosi

b. Dependent Variable: Penjualan

Analisis ;

- Kolom R menunjukkan angka koefisien korelasi yaitu sebesar 0,910.
 Hal ini menunjukkan bahwa hubungan antara variabel sangat kuat.
- Kolom R Square = 0.828 merupakan kuadrat dari nilai korelasi R square juga disebut koefisien determinasi. Hal ini berarti bahwa promosi dan harga dapat menjelaskan penjualan sebesar 82,8 % dan 17,2% dipengaruhi oleh sebab-sebab lain.(100-82,8%)
- Kolom std.Error of Estimated sebesar 13,825 menunjukan bahwa nilai rata-rata dari seluruh data yang menyimpang dari garis regresi. Hal ini menandakan bahwa model regresi ini baik digunakan karena standar deviasi (13,825) lebih kecil dibandingkan dengan standar deviasi Penjualan (29,368).

_												
ſ	Model Unstandardized Coefficients		Standardized Coefficients			Correlations		Collinearity Statistics				
			В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
Γ	1	(Constant)	65.085	47.803		1.362	.216					
		Promosi	2.308	1.182	.570	1.952	.092	.887	.594	.306	.289	3.464
		Harga	.563	.437	.376	1.287	.239	.857	.437	.202	.289	3.464

Coofficiente³

a. Dependent Variable: Penjualan

Analisis ;

Untuk penyusunan persamaan garis regresi dari data diatas dapat menggunakan nilai-nilai dari kolom B yaitu kolom Unstandardized Coefisients. Dari kolom B ini didapat constant = 65,085. Sedangkan untuk nilai koefisien variabel Promosi 2,308 dan koefisien variabel Harga = 0,563.

Sehingga dapat disimpulkan Persamaan garis Regresi seperti ini ;

Y=65,085 + 2,308 X₁ + 0,563 X₂

Keterangan : Y = Variabel Penjualan.

X₁ = Variabel Promosi.

X₂ = Variabel Harga

Bentuk Visualisasi

LATIHAN 8

1. PT Maju Mundur Informatika (MMI) beberapa bulan kedepan akan gencar-gencarnya mengadakan promosi sebuah aksesories computer di berbagai daerah dengan membuka stan di berbagai daerah berikut ini data mengenai penjualan biaya promosi dan luas Stan yang di keluarkan di 15 daerah. Analisislah data berikut ini;

	Daerah	Penjualan	Promosi	Stan
1	Yogya	209	30	154
2	Tangerang	206	28	164
3	Madiun	245	32	192
4	Bandung	201	21	150
5	Semarang	291	49	208
6	Padang	322	40	287
7	Surabaya	204	24	149
8	Medan	216	31	175
9	Bekasi	254	35	198
10	Malang	286	47	201
11	Papua	312	54	248
12	Palembang	265	40	166
13	Bogor	246	31	184
14	Jakarta	205	26	159
15	Solo	234	30	184

 Suatu perusahaan memiliki data usia, income sales person, dan pengalaman kerja sebagai sales. Perusahaan itu ingin membuat model regresi berganda untuk memprediksi income berdasarkan usia dan pengalaman kerja. Data dapat dilihat pada tabel dibawah ini ;

Usia (x1)	Pengalaman kerja (x2)	Income (y)
31	4	35400
3	4	41200
38	5	45000

39	2	40300
30	0	22000
28	3	28000
20	0	13000
23	1	22000
25	2	26000
28	4	27000
29	5	30000

Tentukan koefisiensi dari persamaan regresi berganda dan tentukan apakah koefisiensi yang diperoleh signifikan. Lakukan pula estimasi untuk seorang sales yang berusia 40 tahun dengan pengalaman kerja 4 tahun. Gunakan α = 0,05.

MODUL 7

VALIDITAS DAN REALIBILITAS

Tujuan :

Membuktikan kebenaran suatu butir. Butir yang dikatakan sahih/benar apabila butir tersebut mempunyai kontribusi terhadap nilai variabel yang diukurnya.

Keputusan butir valid atau gugur digunakan dua cara yaitu membandingkan nilai Γ_{xy} hasil hitungan (output SPSS) dengan Γ pada tabel dan membandingkan nilai probabilitas output SPSS dengan nilai probabilitas yang digunakan peneliti (biasanya menggunakan 5% untuk penelitian sosial dan 1% untuk penelitian eksak). Apabila nilai $\Gamma_{xy} \ge \Gamma_{tabel}$ atau probabilitas output SPSS \leq 0,05, maka butir tersebut sahih. Begitu juga sebaliknya apabila nilai $\Gamma_{xy} < \Gamma_{tabel}$ atau nilai probabilitasnya lebih besar dari 0,05 maka butir dapat dikatakan gugur.

Keterangan :

 $r_{xy} = \frac{\sum((X - \overline{X})(Y - \overline{Y}))}{\sqrt{(\sum(X - \overline{X})^2)(\sum(Y - \overline{Y})^2)}} \qquad r_{xy} = \text{Nilai Korelasi } Product Moment}$ = Skor pada butirΥ = Skor total variabel = Rerata skor butir = Rerata skor total

<u>CONTOH</u>

Seorang peneliti ingin mengetahui pengaruh minat belajar dan bakat peserta didik terhadap prestasi belajarnya

Sebelum dilakukan penelitian masing-masing instrumen diuji cobakan dulu untuk mendapat instrument yang valid dan reliable. Uji coba istrumen hanya sekali saja dan dilakukan kepada 10 responden.

		Jawaban Per butir soal											
Responden	1	2	3	4	5	6	7	8	9	10	Total		
1	4	3	3	5	5	4	4	2	2	3	35		
2	5	5	5	5	2	5	4	4	3	5	43		
3	2	5	2	5	5	5	4	2	3	2	35		
4	4	5	2	4	3	2	2	2	3	4	31		
5	3	5	3	5	5	5	4	4	4	5	43		
6	5	5	2	5	3	3	4	3	3	4	37		
7	4	2	3	4	5	3	4	5	3	2	35		
8	5	5	2	5	5	5	2	4	4	5	42		
9	2	5	3	5	2	4	4	5	3	5	38		
10	5	4	3	4	3	5	4	2	3	4	37		

Tabel. 7.1 sebaran jawaban per butir soal

Langkah – langkah menjawab dengan menggunkan SPSS

• Lengkapi Variabel View

Untitled3	🚰 Untitled3 [DataSet2] - SPSS Statistics Data Editor												
<u>File E</u> dit (<u>√</u> iew <u>D</u> ata <u>T</u> i	ransform <u>A</u> naly	ze <u>G</u> raphs	<u>U</u> tilities A	dd- <u>o</u> ns <u>Wi</u> ndow	Help							
≽ 📙 🚑	📴 🔶 📂	🏪 📭 🔐 🏘	i 📲 📩	🔡 🥸 📷	🛛 🐝 🍙 🧠 😻								
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure			
1	Form_1	Numeric	8	0	Formulir 1	None	None	8	🔳 Right	🛷 Scale			
2	Form_2	Numeric	8	0	Formulir 2	None	None	8	/≡ Right	🛷 Scale			
3	Form_3	Numeric	8	0	Formulir 3	None	None	8	≡ Right	🛷 Scale			
4	Form_4	Numeric	8	0	Formulir 4	None	None	8	≡ Right	🛷 Scale			
5	Form_5	Numeric	8	0	Formulir 5	None	None	8	ा≣ Right	🛷 Scale			
6	Form_6	Numeric	8	0	Formulir 6	None	None	8	ा≣ Right	🛷 Scale			
7	Form_7	Numeric	8	0	Formulir 7	None	None	8	ा Right == Right	🛷 Scale			
8	Form_8	Numeric	8	0	Formulir 8	None	None	8	ा Right ==	🛷 Scale			
9	Form_9	Numeric	8	0	Formulir 9	None	None	8	ा Right == Right	🛷 Scale			
10	Form_10	Numeric	8	0	Formulir 10	None	None	8	/≡ Right	🛷 Scale			
11	Total	Numeric	8	0	Total	None	None	8	ा Right == Right	🛷 Scale			

Gambar 7.1 Tampilan Variabel View

• Kemudian masukkan data pada Data Editor.

🚰 Untitled3 [[🚰 Untitled3 [DataSet2] - SPSS Statistics Data Editor												
<u>F</u> ile <u>E</u> dit ⊻	jew <u>D</u> ata <u>⊺</u> r	ransform <u>A</u> naly	/ze <u>G</u> raphs	<u>U</u> tilities Add- <u>o</u>	ns <u>W</u> indow	Help							
🗁 📙 🚑	📴 👆 👼	🏪 📑 📑 🤞	M 🔸 📩	🗄 🥼 📑 🚿	¥ 💊 🍬	1							
1 : Form_1	1 : Form_1 4												
	Form_1	Form_2	Form_3	Form_4	Form_5	Form_6	Form_7	Form_8	Form_9	Form_10			
1	4.0	3	3	5	5	4	4	2	2	3			
2	5	5	5	5	2	5	4	4	3	5			
3	2	5	2	5	5	5	4	2	3	2			
4	4	5	2	4	3	2	2	2	3	4			
5	3	5	3	5	5	5	4	4	4	5			
6	5	5	2	5	3	3	4	3	3	4			
7	4	2	3	4	5	3	4	5	3	2			
8	5	5	2	5	5	5	2	4	4	5			
9	2	5	3	5	2	4	4	5	3	5			
10	5	4	3	4	3	5	4	2	3	4			

Gambar 7.2 Tampilan Data View

• Sort Menu *Analyze* pilih *Corelation* klik kiri menu *Bivariat*.

Untitled3 [[DataSet2] - SPS	S Statistics	Data Editor			and the second second			-	
Eile Edit y	<u>√</u> iew <u>D</u> ata <u>T</u>	ransform	Analyze Graphs Utilities	Add-	-ons <u>W</u> indow	Help				
≽ 📙 🚔	📴 👆 💏	1	Reports	•	😽 💊 🍋 😻					
	Name	Ty	Descriptive Statistics	►	Label	Values	Missing	Columns	Align	Measure
1	Form_1	Numerio	Tables	•	prmulir 1	None	None	8	🗏 Right	🛷 Scale
2	Form_2	Numerio	RFM Analys <u>i</u> s	•	ərmulir 2	None	None	8	≡ Right	🛷 Scale
3	Form_3	Numeric	Compare Means	►	ərmulir 3	None	None	8	≡ Right	🛷 Scale
4	Form_4	Numeric	General Linear Model	►	prmulir 4	None	None	8	🗏 Right	🛷 Scale
5	Form_5	Numeric	Generalized Linear Models	•	ormulir 5	None	None	8	≡ Right	🛷 Scale
6	Form_6	Numerio	Mixed Models	•)rmulir 6	None	None	8	≡ Right	🛷 Scale
7	Form_7	Numeric	Correlate	►	l <mark>í₂</mark> <u>B</u> ivariate	he	None	8	🗏 Right	🛷 Scale
8	Form_8	Numeric	Regression	•	123 Partial	ne	None	8	🗏 Right	🛷 Scale
9	Form_9	Numerio	L <u>og</u> linear	•	δ <u>D</u> istances	ne	None	8	≡ Right	🛷 Scale
10	Form_10	Numerio	Neural Net <u>w</u> orks	•	prmulir 10	None	None	8	≡ Right	🛷 Scale
11	Total	Numeric	Classi <u>f</u> y	•	ıtal	None	None	8	ा Right ==	🛷 Scale
12			Dimension Reduction	•						

Gambar 7.3 Gambar Tampilan Analisis

Pada Dialog, butir-butir pada kotak kiri dimasukkan ke kolom
 Variabels, pada *corelation coeffisients* pilih *Pearson*, pada kotak
 dialog *Test of Significance* pilih *One Tailed*, selanjutnya *OK*.

Bivariate Correlations
Variables: Options Image: Second state of the second state of t

Gambar 7.4 Tampilan Bivariate Correlations

Formulir 1	Pearson Correlation	1 1	138	.182	250	155	U/b	264	1 <i>2</i> b	.016	.225	j <i></i> in
	Sig. (1-tailed)		.352	.308	.243	.334	.417	.230	.364	.482	.266	.312
	N	10	10	10	10	10	10	10	10	10	10	10
Formulir 2	Pearson Correlation	138	1	135	.471	408	.244	294	099	.473	.639*	.353
	Sig. (1-tailed)	.352		.355	.085	.121	.248	.205	.393	.083	.023	.158
	N	10	10	10	10	10	10	10	10	10	10	10
Formulir 3	Pearson Correlation	.182	135	1	.100	404	.352	.459	.348	170	.283	.492
	Sig. (1-tailed)	.308	.355		.392	.123	.160	.091	.162	.319	.214	.074
	N	10	10	10	10	10	10	10	10	10	10	10
Formulir 4	Pearson Correlation	250	.471	.100	1	.070	.481	.218	.165	.122	.327	.567*
	Sig. (1-tailed)	.243	.085	.392		.424	.080	.272	.324	.369	.178	.044
	Ν	10	10	10	10	10	10	10	10	10	10	10
Formulir 5	Pearson Correlation	155	408	404	.070	1	.169	080	094	.178	508	038
	Sig. (1-tailed)	.334	.121	.123	.424		.321	.413	.398	.311	.067	.458
	Ν	10	10	10	10	10	10	10	10	10	10	10
Formulir 6	Pearson Correlation	076	.244	.352	.481	.169	1	.287	.056	.338	.261	.721**
	Sig. (1-tailed)	.417	.248	.160	.080	.321		.210	.438	.170	.233	.009
	Ν	10	10	10	10	10	10	10	10	10	10	10
Formulir 7	Pearson Correlation	264	294	.459	.218	080	.287	1	.126	371	264	.146
	Sig. (1-tailed)	.230	.205	.091	.272	.413	.210		.364	.145	.230	.344
	Ν	10	10	10	10	10	10	10	10	10	10	10
Formulir 8	Pearson Correlation	126	099	.348	.165	094	.056	.126	1	.422	.319	.518
	Sig. (1-tailed)	.364	.393	.162	.324	.398	.438	.364		.112	.185	.063
	N	10	10	10	10	10	10	10	10	10	10	10
Formulir 9	Pearson Correlation	.016	.473	170	.122	.178	.338	371	.422	1	.507	.610*
	Sig. (1-tailed)	.482	.083	.319	.369	.311	.170	.145	.112		.067	.031
	N	10	10	10	10	10	10	10	10	10	10	10
Formulir 10	Pearson Correlation	.225	.639	.283	.327	508	.261	264	.319	.507	1	.667*
	Sig. (1-tailed)	.266	.023	.214	.178	.067	.233	.230	.185	.067		.018
	<u>₽</u>										Same -	~

• Setelah itu akan muncul output seperti ini

Gambar 7.5 Hasil Output

 Agar terlihat rapi dan memudahkan kita dalam pembacaan table, klik kanan/ double klik pada *tabel output*, pilih *Pivot, Edit* kemudian pilih *pivoting traying*. Akan mucul gambar dibawah Pidahkan kotak dikolom ke layer dan kotak statistik di row ke column.

Gambar 7.6 Tabel Pivot

2. Terlihat hasil yang lebih rapi, ingat pada variabel ke dua yangdimuncukkan adalah *TOTAL*.

Correlations

Correlations								
Variables TOTAL -								
	Pearson Correlation	Sig. (1-tailed)	Z					
ORMULIR 1	.016	.482	10					
FORMULIR 2	250	.243	10					
FORMULIR 3	.236	.256	10					
FORMULIR 4	.783**	.004	10					
FORMULIR 5	294	.205	10					
FORMULIR 6	033	.464	10					
FORMULIR 7	.248	.245	10					
FORMULIR 8	.668*	.017	10					
TOTAL	1		10					
 Correlation 	n is significant at t	the 0.05 level (1-ta	ailed).					
**. Correlatio	on is significant at	the 0.01 level (1-	tailed).					

Untuk menganalisis uji validitas, digunakan *test of significance* satu sisi(1*tailed*). Dan dari hasil perhitungan tersebut maka didapat interpretasi sebagai berikut,

- Probabilitas antara Form (butir) 1 dan total butir adalah 0,312 yang berarti p >0,05.
- Probabilitas antara Form (butir) 2 dan total butir adalah 0,158 yang berarti p>0,05.
- Probabilitas antara Form (butir) 3 dan total butir adalah 0,074yang berarti p >0,05.
- Probabilitas antara Form (butir) 4 dan total butir adalah 0,044 yang berarti p > 0,05.
- Probabilitas antara Form (butir) 5 dan total butir adalah 0,458 yang berarti p >0,05.
- Probabilitas antara Form (butir) 6 dan total butir adalah 0,009 yang berarti p < 0,05.
- Probabilitas antara Form (butir) 7 dan total butir adalah 0,344yang berarti p >0,05.
- Probabilitas antara Form (butir) 8 dan total butir adalah 0,063yang berarti p >0,05.

- Probabilitas antara Form (butir) 9 dan total butir adalah 0,031 yang berarti p <0,05.
- Probabilitas antara Form (butir) 10 dan total butir adalah 0,018 yang berarti p <0,05.

Suatu pengukuran dinyatakan valid apabila memiliki korelasi yang signifikan. Dikatakan signifikan jika p < 0,05. Dari interpretasi diatas, dapat disimpulkan bahwa butir 1,2,3,4,5,7,dan 8 tidak signifikan karena p > 0,05. Maka dari itu butir pertanyaan 1,2,3,5,6,dan7 bisa dikatakan **tidak valid**. Sedangkan butir 6, 9 dan 10 masing-masing memiliki korelasi yang signifikan dengan total butir karena p < 0,05. Maka dapat disimpulkan bahwa butir pertanyaan 6, 9 dan 10 bisa dinyatakan **valid**.

<u>Reliabilitas</u>

Tujuan utama pengujian reliabilitas adalah untuk mengetahui konsistensi atau keteraturan hasil pengukuran suatu instrumen apabila instrumen tersebut digunakan lagi sebagai alat ukur suatu objek atau responden (Triton PB, 2005).

Untuk menguji kereliabilitasan suatu kuisioner digunakan metode Alpha-Cronbach. Standar yang digunakan dalam menentukan reliabel dan tidaknya suatu kuisioner penelitian umumnya adalah perbandingan antara nilai Γ_{hitung} dengan Γ_{tabel} pada taraf kepercayaan 95% atau tingkat signifikansi 5%. Pengujian reliabilitas dengan metode Alpha Cronbach ini, maka nilai Γ_{hitung} diwakili oleh nilai Alpha. Menurut Santoso (2001:227), apabila alpha hitung lebih besar daripada Γ_{tabel} dan alpha hitung bernilai positif, maka suatu kuesioner dapat disebut reliabel. Rumus Alpha Cronbach :

$$r_{i} = \frac{k}{k-1} \left\{ 1 - \frac{\sum {s_{i}}^{2}}{s_{t}} \right\}$$

Bila koefisien reliabilitas telah dihitung, maka untuk menentukan keeratan hubungan bisa digunakan kriteria Guilford, yaitu :

- < 0,20 : Hubungan yang sangat kecil dan bisa diabaikan
 0,20 < 0,40 : Hubungan yang kecil (tidak erat)
- 3. 0,40 < 0,70 : Hubungan yang cukup erat
- 4. 0,70 < 0,90 : Hubungan yang erat (reliabel)
- 5. 0,90 < 1,00 : Hubungan yang sangat erat (sangat reliabel)
- 6. 1,00 : Hubungan yang sempurna

<u>CONTOH</u>

Berdasarkan data pada Uji Validitas :

Untitled3 [[😨 Untitled3 [DataSet2] - SPSS Statistics Data Editor									
<u>E</u> ile <u>E</u> dit ⊻i	iew <u>D</u> ata <u>T</u> r	ansform <u>A</u> naly	/ze <u>G</u> raphs	Utilities Add-o	ns <u>W</u> indow	Help				
😕 🖬 🖕 💼 🔶 🚵 📪 🛤 📲 🏦 🏥 🕮 🕸 🧱 🥸 🚳 🐄										
1 : Form_1 4										
	Form_1	Form_2	Form_3	Form_4	Form_5	Form_6	Form_7	Form_8	Form_9	Form_10
1	4.0	3	3	5	5	4	4	2	2	3
2	5	5	5	5	2	5	4	4	3	5
3	2	5	2	5	5	5	4	2	3	2
4	4	5	2	4	3	2	2	2	3	4
5	3	5	3	5	5	5	4	4	4	5
6	5	5	2	5	3	3	4	3	3	4
7	4	2	3	4	5	3	4	5	3	2
8	5	5	2	5	5	5	2	4	4	5
9	2	5	3	5	2	4	4	5	3	5
10	5	4	3	4	3	5	4	2	3	4

Gambar 7.7 Tampilan Data yang di Uji

Pilih Menu *Analyze*, sort kebawah pilih menu *Scale*, kemudian klik menu *Reliability Analysis...*,

U 🔝	🚰 Untitled3 [DataSet2] - SPSS Statistics Data Editor													
Eile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transform	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Add	- <u>o</u> ns	<u>W</u> in	idow	Help		
B	2	<u>.</u>	• •	*	Repor	Reports			\$	ð (ab A	7		
1 : To	ntal		3	5.0	D <u>e</u> scr	Descriptive Statistics						_		
		Form	Form	Form Fo	Ta <u>b</u> les	3		►	n E	orm	Total			
		_1	_2	_3 _	RFM A	Analys <u>i</u> s		•		10		var	var	var
	1	4	I З	3	Compa	are Means		•	2	3	- 35			
	2	6	5 5	5	<u>G</u> ener	al Linear M	odel	•	З	5	43			
	3	_ 2	2 5	2	Gener	Generali <u>z</u> ed Linear Models			З	2	35			
	4	4	5	2	Mi <u>x</u> ed	Mi <u>x</u> ed Models			В	4	31			
	5	3	5 5	3	<u>C</u> orrel	<u>C</u> orrelate			4	5	43			
	6	5	5 5	2	<u>R</u> egre	<u>R</u> egression		•	З	4	37			
	7	4	2	3	Loglin	ear		•	З	2	35			
	8	5	5 5	2	Neura	l Net <u>w</u> orks		•	4	5	42			
	9	2	2 5	3	Classi	ÍV		►	В	5	38			
	10	5	5 4	3	Dimen	sion Reduc	tion	•	В	4	37			
	11				Sc <u>a</u> le			►	P _{RK} E	<u>R</u> eliabi	lity Ana	alysis		
	12				Nonpa	arametric Te	ests	►	٨	M <u>u</u> ltidir	nensio	nal Unfolding (P	PREFSCAL)	
	13				Forec	asting		•	٨	Multidir	nensio	nal Scaling (<u>P</u> R	OXSCAL)	
	14				<u>S</u> urviv	/al		•	36 1	<u>M</u> ultidir	nensio	nal Scaling (AL	SCAL)	
	15				Multipl	e Respons	е).						
	16				🔀 Missin	iq Value Ar	alysis							

Gambar 7.8 Tampilan Analisis

Muncul kotak dialog, masukkan Butir kedalam *Box Item*, Kemudian tekan *OK*

Reliability	Analysis	×
Model: Scale label:	tems: Image: Properties of the second state of the second st	Statistics

Gambar 7.9 Tampilan Reliability Analysis

• Output SPSS akan menunjukkan sebagai berikut:

Scale: ALL VARIABLES

		N	%
Cases	Valid	10	100.0
	Excluded ^a	0	.0
	Total	10	100.0

Case Processing Summary

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.640	11

Responden yang diteliti pada uji coba kuisioner berjumlah 10 (N=10) dan semua data tidak ada yang *exclude* atau dikeluarkan dari analisis. Nilai Alpha Cronbach adalah 0,640 dengan jumlah pertanyaan 10 butir. Nilai r tabel untuk diuji dua sisi pada taraf kepercayaan 95% atau signifikansi 5% (p=0,05) dapat dicari berdasarkan jumlah responden. Oleh karena nilai Alpha Cronbach = 0,640 Maka kuisioner yang diuji memiliki tingkat reliabilitas yang cukup erat.

LATIHAN 9

1. Carilah Validitas dan Reliabilitas Prestasi Kerja (Y), dari hasil tabulasi data untuk Variabel Prestasi Kerja sebagai berikut :

No.				Nomo	r Butir I	Pernya	ataan				JML
Res	01	02	03	04	05	06	07	08	09	10	Y
01	4	4	5	4	5	4	4	5	4	3	42
02	3	3	3	4	4	3	3	4	4	3	34
03	4	5	5	5	5	4	5	5	5	5	48
04	4	4	4	4	2	4	4	2	4	2	34
05	3	5	4	5	4	3	5	4	3	4	40
06	4	3	4	4	4	4	3	4	3	4	37
07	4	3	4	4	5	5	3	3	4	4	39
08	4	5	5	5	5	4	5	5	4	3	45
09	5	3	4	4	3	5	3	3	4	4	38
10	4	3	4	4	4	4	3	4	4	4	38
11	5	5	5	5	4	5	5	4	4	5	47
12	4	3	2	3	3	4	3	3	3	1	29
13	1	3	5	2	2	1	3	2	3	1	23
14	3	5	4	4	5	3	5	5	1	4	39
15	4	4	4	1	5	4	1	3	3	5	34
16	4	4	5	3	5	5	4	5	5	4	44
17	4	5	5	3	5	5	5	3	4	5	44
18	3	4	4	4	4	3	4	4	4	4	38
19	4	4	2	4	4	2	4	4	2	1	31
20	4	3	4	3	4	3	4	4	4	4	37

				Jawaba	an Resp	onden			total	
No	Responden	butir	butir	butir	butir	butir	butir	butir	total	
		1	2	3	4	5	6	7	Dutii	
1	Neviana	3	4	3	4	2	4	2	22	
2	Putri	2	2	3	2	2	4	1	16	
3	Fita	1	2	3	4	4	2	3	19	
4	Hidayatullah	3	2	3	1	2	3	4	18	
5	Danar	2	3	4	4	2	3	2	20	
6	Ela	4	3	2	4	4	2	2	21	
7	Yuni	2	3	2	4	1	2	3	17	
8	Bagus	2	2	4	2	2	3	2	17	
9	Ardita	4	2	3	2	3	3	4	21	
10	Erlind	3	1	1	3	2	4	4	18	
11	Ida	2	3	2	3	4	4	4	22	
12	Mustofa	2	3	4	5	1	2	5	22	
13	Ferdinan	5	2	3	1	2	1	4	18	
14	Yunus	2	1	2	3	4	3	4	19	
15	Prima	3	2	3	2	5	5	5	25	
16	Andy	2	3	3	3	4	2	4	21	
17	Arif	4	3	2	3	4	2	4	22	
18	Nazar	1	2	3	4	5	4	3	17	
19	Irwan	5	4	3	4	2	2	1	21	
20	Amsarry	2	4	4	2	2	3	1	18	

 Carilah Validitas dan Reliabilitas motivasi kerja, dari hasil tabulasi data untuk Variabel motivasi Kerja sebagai berikut :

SKALA LIKERT

Pengertian Skala Likert (*Likert Scale*) dan Menggunakannya – Skala Likert atau Likert Scale adalah skala penelitian yang digunakan untuk mengukur sikap dan pendapat. Dengan skala likert ini, responden diminta untuk melengkapi kuesioner yang mengharuskan mereka untuk menunjukkan tingkat persetujuannya terhadap serangkaian pertanyaan. Pertanyaan atau pernyataan yang digunakan dalam penelitian ini biasanya disebut dengan variabel penelitian dan ditetapkan secara spesifik oleh peneliti. Nama Skala ini diambil dari nama penciptanya yaitu Rensis Likert, seorang ahli psikologi sosial dari Amerika Serikat.

Tingkat persetujuan yang dimaksud dalam skala Likert ini terdiri dari 5 pilihan skala yang mempunyai gradasi dari Sangat Setuju (SS) hingga Sangat Tidak Setuju (STS). 5 pilihan tersebut diantaranya adalah :

> Sangat Setuju (SS) Setuju (S) Ragu-ragu (RG) Tidak Setuju (TS) Sangat Tidak Setu (STS)

Selain gradasi Persetujuan, dapat juga digunakan pada beberapa jenis gradasi tentang sikap dan pendapat. Seperti :

> Sangat Suka Suka Netral Tidak Suka Sangat Tidak Suka

Contoh Skala Likert di Kuesioner

Pada umumnya, instrument penelitian yang menggunakan skala Likert dibuat dalam bentuk angket atau kuesioner dengan pilihan ganda atau checklist (daftar periksa).

CONTOH SKALA LIKERT DI KUESIONER

No	Pertanyaan	SS	S	RG	TS	STS
1	Apakah anda setuju dengan peraturan perusahaan yang mengharuskan semua karyawannya melepaskan Jam tangan, cincin dan tali pinggang sebelum masuk ke wilayah produksi ?				٧	
2						5

teknikelektronika.com

Untuk menterjemahkan hasil skala likert ini adalah dengan analisis interval. Agar dapat dihitung dalam bentuk kuantitatif, jawaban-jawaban dari Responden tersebut dapat diberi bobot nilai atau skor likert seperti dibawah ini :

> SS = Sangat Setuju, diberi nilai 5 S = Setuju, diberi nilai 4 RG = Ragu-ragu, diberi nilai 3 TS = Tidak Setuju, diberi nilai 2 STS = Sangat Tidak Setuju, diberi nilai 1

Total Skor Likert dapat dilihat dari perhitungan dibawah ini :

Jawaban Sangat Setuju (SS) = 30 responden x 5 = 150

Jawaban Setuju (S) = 30 responden x 4 = 120

Ragu-ragu (RG) = 5 responden x = 3 = 15

Tidak Setuju (TS) = 20 responden x 2 = 60

Sangat Tidak Setuju = 15 responden x 1 = 15

Total Skor = 360

Skor Maksimum = 100 x 5 = 500 (jumlah responden x skor tertinggi likert)

Skor Minimum = 100 x 1 = 500 (jumlah responden x skor terendah likert)

Indeks (%) = (Total Skor / Skor Maksimum) x 100

Indeks (%) = (360 / 500) x 100

Indeks (%) = 72%

Interval Penilaian

0% - 19,99%	Sangat Tidak Setuju
20% - 39,99%	Tidak Setuju
40% - 59,99%	Ragu-ragu
60% - 79,99%	Setuju
80% - 100%	Sangat Setuju

Karena nilai Indeks yang kita dapatkan dari perhitungan adalah 72%, maka dapat disimpulkan bahwa responden "SETUJU" akan peraturan perusahaan yang mengharuskan semua karyawannya melepaskan Jam tangan, cincin dan tali pinggang sebelum masuk ke wilayah produksi.

LATIHAN 10

Buatlah kuesioner tentang pemanfaatan media sosial. Setiap kuesinoner minimal 10 item pernyataan, kemudian sebarkan ke 30 responden. Selanjutnya olah data tersebut menggunakan skala likert.

Tabel r untuk df = 1 - 50

	Tingkat signifikansi untuk uji satu arah					
df = (N-2)	0.05	0.025	0.01	0.005	0.0005	
	Tingkat signifikansi untuk uji dua arah					
	0.1	0.05	0.02	0.01	0.001	
1	0.9877	0.9969	0.9995	0.9999	1.0000	
2	0.9000	0.9500	0.9800	0.9900	0.9990	
3	0.8054	0.8783	0.9343	0.9587	0.9911	
4	0.7293	0.8114	0.8822	0.9172	0.9741	
5	0.6694	0.7545	0.8329	0.8745	0.9509	
6	0.6215	0.7067	0.7887	0.8343	0.9249	
7	0.5822	0.6664	0.7498	0.7977	0.8983	
8	0.5494	0.6319	0.7155	0.7646	0.8721	
9	0.5214	0.6021	0.6851	0.7348	0.8470	
10	0.4973	0.5760	0.6581	0.7079	0.8233	
11	0.4762	0.5529	0.6339	0.6835	0.8010	
12	0.4575	0.5324	0.6120	0.6614	0.7800	
13	0.4409	0.5140	0.5923	0.6411	0.7604	
14	0.4259	0.4973	0.5742	0.6226	0.7419	
15	0.4124	0.4821	0.5577	0.6055	0.7247	
16	0.4000	0.4683	0.5425	0.5897	0.7084	
17	0.3887	0.4555	0.5285	0.5751	0.6932	
18	0.3783	0.4438	0.5155	0.5614	0.6788	
19	0.3687	0.4329	0.5034	0.5487	0.6652	
20	0.3598	0.4227	0.4921	0.5368	0.6524	
21	0.3515	0.4132	0.4815	0.5256	0.6402	

22	0.3438	0.4044	0.4716	0.5151	0.6287
23	0.3365	0.3961	0.4622	0.5052	0.6178
24	0.3297	0.3882	0.4534	0.4958	0.6074
25	0.3233	0.3809	0.4451	0.4869	0.5974
26	0.3172	0.3739	0.4372	0.4785	0.5880
27	0.3115	0.3673	0.4297	0.4705	0.5790
28	0.3061	0.3610	0.4226	0.4629	0.5703
29	0.3009	0.3550	0.4158	0.4556	0.5620
30	0.2960	0.3494	0.4093	0.4487	0.5541
31	0.2913	0.3440	0.4032	0.4421	0.5465
32	0.2869	0.3388	0.3972	0.4357	0.5392
33	0.2826	0.3338	0.3916	0.4296	0.5322
34	0.2785	0.3291	0.3862	0.4238	0.5254
35	0.2746	0.3246	0.3810	0.4182	0.5189
36	0.2709	0.3202	0.3760	0.4128	0.5126
37	0.2673	0.3160	0.3712	0.4076	0.5066
38	0.2638	0.3120	0.3665	0.4026	0.5007
39	0.2605	0.3081	0.3621	0.3978	0.4950
40	0.2573	0.3044	0.3578	0.3932	0.4896
41	0.2542	0.3008	0.3536	0.3887	0.4843
42	0.2512	0.2973	0.3496	0.3843	0.4791
43	0.2483	0.2940	0.3457	0.3801	0.4742
44	0.2455	0.2907	0.3420	0.3761	0.4694
45	0.2429	0.2876	0.3384	0.3721	0.4647
46	0.2403	0.2845	0.3348	0.3683	0.4601
47	0.2377	0.2816	0.3314	0.3646	0.4557
48	0.2353	0.2787	0.3281	0.3610	0.4514
49	0.2329	0.2759	0.3249	0.3575	0.4473
50	0.2306	0.2732	0.3218	0.3542	0.4432

Tabel r untuk df = 51 - 100

	Tingkat signifikansi untuk uji satu arah					
df = (N-2)	0.05	0.025	0.01	0.005	0.0005	
	Tingkat signifikansi untuk uji dua arah					
	0.1	0.05	0.02	0.01	0.001	
51	0.2284	0.2706	0.3188	0.3509	0.4393	
52	0.2262	0.2681	0.3158	0.3477	0.4354	
53	0.2241	0.2656	0.3129	0.3445	0.4317	
54	0.2221	0.2632	0.3102	0.3415	0.4280	
55	0.2201	0.2609	0.3074	0.3385	0.4244	
56	0.2181	0.2586	0.3048	0.3357	0.4210	
57	0.2162	0.2564	0.3022	0.3328	0.4176	
58	0.2144	0.2542	0.2997	0.3301	0.4143	
59	0.2126	0.2521	0.2972	0.3274	0.4110	
60	0.2108	0.2500	0.2948	0.3248	0.4079	
61	0.2091	0.2480	0.2925	0.3223	0.4048	
62	0.2075	0.2461	0.2902	0.3198	0.4018	
63	0.2058	0.2441	0.2880	0.3173	0.3988	
64	0.2042	0.2423	0.2858	0.3150	0.3959	
65	0.2027	0.2404	0.2837	0.3126	0.3931	
66	0.2012	0.2387	0.2816	0.3104	0.3903	
67	0.1997	0.2369	0.2796	0.3081	0.3876	
68	0.1982	0.2352	0.2776	0.3060	0.3850	
69	0.1968	0.2335	0.2756	0.3038	0.3823	
70	0.1954	0.2319	0.2737	0.3017	0.3798	
71	0.1940	0.2303	0.2718	0.2997	0.3773	
72	0.1927	0.2287	0.2700	0.2977	0.3748	
73	0.1914	0.2272	0.2682	0.2957	0.3724	
74	0.1901	0.2257	0.2664	0.2938	0.3701	
75	0.1888	0.2242	0.2647	0.2919	0.3678	

76	0.1876	0.2227	0.2630	0.2900	0.3655
77	0.1864	0.2213	0.2613	0.2882	0.3633
78	0.1852	0.2199	0.2597	0.2864	0.3611
79	0.1841	0.2185	0.2581	0.2847	0.3589
80	0.1829	0.2172	0.2565	0.2830	0.3568
81	0.1818	0.2159	0.2550	0.2813	0.3547
82	0.1807	0.2146	0.2535	0.2796	0.3527
83	0.1796	0.2133	0.2520	0.2780	0.3507
84	0.1786	0.2120	0.2505	0.2764	0.3487
85	0.1775	0.2108	0.2491	0.2748	0.3468
86	0.1765	0.2096	0.2477	0.2732	0.3449
87	0.1755	0.2084	0.2463	0.2717	0.3430
88	0.1745	0.2072	0.2449	0.2702	0.3412
89	0.1735	0.2061	0.2435	0.2687	0.3393
90	0.1726	0.2050	0.2422	0.2673	0.3375
91	0.1716	0.2039	0.2409	0.2659	0.3358
92	0.1707	0.2028	0.2396	0.2645	0.3341
93	0.1698	0.2017	0.2384	0.2631	0.3323
94	0.1689	0.2006	0.2371	0.2617	0.3307
95	0.1680	0.1996	0.2359	0.2604	0.3290
96	0.1671	0.1986	0.2347	0.2591	0.3274
97	0.1663	0.1975	0.2335	0.2578	0.3258
98	0.1654	0.1966	0.2324	0.2565	0.3242
99	0.1646	0.1956	0.2312	0.2552	0.3226
100	0.1638	0.1946	0.2301	0.2540	0.3211

DAFTAR PUSTAKA

- Pramono, I Wayan S. 2011. **Modul Statistika Pendidikan**. Malang. Universitas Negeri Malang.
- Sugiono, Dr., Prof., 2010. Metode Penelitian Kuantitatif Kualitatif Dan R&D. Alfabeta. Bandung.
- Wirawan, Nata. 2014. **Statistika Ekonomi dan Bisnis (Statistika Inferensial)**. Denpasar. Keraras Emas.
- _____, **Modul Praktikum Mata Kuliah Statistika**. STMIK "AMIKOM" Yogyakarta

http://elearning.amikom.ac.id/index.php/download/materi/55511 1-ST121-54/2015/04/20150430 Modul

RIWAYAT PENULIS

PENULIS 1

Ni Wayan Suardiati Putri dilahirkan di Gianyar pada 15 Juli 1988 dari pasangan Drs. I Ketut Ruta Ardinata dan Ni Ketut Sumawati. Merupakan anak pertama dari dua bersaudara. Setelah menamatkan Sekolah Dasar (SD) Negeri 1 Singapadu tahun 2000, kemudian melanjutkan ke Sekolah Menengah Pertama (SMP) Negeri 2 Sukawati dan tamat pada tahun 2003.

Kemudian tahun 2003 melanjutkan ke Sekolah Menengah Menengah Atas (SMA) Negeri 1 Blahbatuh dan tamat pada tahun 2006. Kemudian tahun 2006 melanjutkan studi ke Universitas Mahasaraswati Denpasar Jurusan Pendidikan Matematika dan tamat pada tahun 2010. Kemudian tahun 2011 kembali melanjutkan studi ke Universitas Pendidikan Ganesha Singaraja pada Program Pascasarjana, Program Studi Pendidikan Matematika dan tamat pada tahun 2014. Dan sekarang bekerja sebagai dosen matematika di STMIK STIKOM INDONESIA

PENULIS 2

Ni Kadek Suryati dilahirkan di Denpasar pada 30 Juni 1989 dari pasangan I Ketut Wendra, S.Ag dengan Ni Rai Armini. Setelah menamatkan Sekolah Dasar (SD) Negeri No 6 Peguyangan tahun 2001, kemudian melanjutkan ke Sekolah Menengah Pertama (SMP) Negeri 10 Denpasar dan tamat pada tahun 2004. Kemudian tahun 2004 melanjutkan ke Sekolah Menengah Menengah Atas (SMA)

Negeri 6 Denpasar dan tamat pada tahun 2007. Kemudian tahun 2007
melanjutkan studi ke Perguruan Tinggi IKIP PGRI Bali (Program S1 Jurusan Pendidikan Matematika) dan tamat pada tahun 2011. Kemudian tahun 2012 kembali melanjutkan studi ke Universitas Pendidikan Ganesha Singaraja pada Program Pascasarjana, Program Studi Pendidikan Matematika dan tamat pada tahun 2014. Dan sekarang bekerja sebagai dosen matematika di STMIK STIKOM INDONESIA.